BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33463289)

  • 1. Microfluidic Silk Fibers with Aligned Hierarchical Microstructures.
    Li S; Hang Y; Ding Z; Lu Q; Lu G; Chen H; Kaplan DL
    ACS Biomater Sci Eng; 2020 May; 6(5):2847-2854. PubMed ID: 33463289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphic regenerated silk fibers assembled through bioinspired spinning.
    Ling S; Qin Z; Li C; Huang W; Kaplan DL; Buehler MJ
    Nat Commun; 2017 Nov; 8(1):1387. PubMed ID: 29123097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toughening Wet-Spun Silk Fibers by Silk Nanofiber Templating.
    Yao Y; Allardyce BJ; Rajkhowa R; Hegh D; Qin S; Usman KAS; Mota-Santiago P; Zhang J; Lynch P; Wang X; Kaplan DL; Razal JM
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100891. PubMed ID: 34939252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Dry-spinning and Characterization of Regenerated Silk Fibroin Fibers.
    Peng Q; Shao H; Hu X; Zhang Y
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28892028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Silk Fiber Spinning System via Automated Track-Drawing.
    Jao D; Hu X; Beachley V
    ACS Appl Bio Mater; 2021 Dec; 4(12):8192-8204. PubMed ID: 35005928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein.
    Wöltje M; Isenberg KL; Cherif C; Aibibu D
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.
    Ha SW; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation.
    Zhang L; Xu L; Li G; Yang Y
    Colloids Surf B Biointerfaces; 2019 Jan; 173():689-697. PubMed ID: 30384265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tough silk fibers prepared in air using a biomimetic microfluidic chip.
    Luo J; Zhang L; Peng Q; Sun M; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2014 May; 66():319-24. PubMed ID: 24613677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous, Aligned, and Biomimetic Fibers of Regenerated Silk Fibroin Produced by Solution Blow Spinning.
    Magaz A; Roberts AD; Faraji S; Nascimento TRL; Medeiros ES; Zhang W; Greenhalgh RD; Mautner A; Li X; Blaker JJ
    Biomacromolecules; 2018 Dec; 19(12):4542-4553. PubMed ID: 30387602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinning Regenerated Silk Fibers with Improved Toughness by Plasticizing with Low Molecular Weight Silk.
    Yao Y; Allardyce BJ; Rajkhowa R; Guo C; Mu X; Hegh D; Zhang J; Lynch P; Wang X; Kaplan DL; Razal JM
    Biomacromolecules; 2021 Feb; 22(2):788-799. PubMed ID: 33337131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.
    Dong X; Zhao Q; Xiao L; Lu Q; Kaplan DL
    Biomacromolecules; 2016 Sep; 17(9):3000-6. PubMed ID: 27476755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wild Silkworm Cocoon Waste Conversion into Tough Regenerated Silk Fibers by Solution Spinning.
    Yazawa K; Iwata S; Gotoh Y
    Biomacromolecules; 2023 Apr; 24(4):1700-1708. PubMed ID: 36917682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity.
    Ding Z; Lu G; Cheng W; Xu G; Zuo B; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2357-2367. PubMed ID: 33455344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics.
    Wu R; Ma L; Liu XY
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103981. PubMed ID: 34802200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.
    Zhang F; Lu Q; Yue X; Zuo B; Qin M; Li F; Kaplan DL; Zhang X
    Acta Biomater; 2015 Jan; 12():139-145. PubMed ID: 25281787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution.
    Xie F; Zhang H; Shao H; Hu X
    Int J Biol Macromol; 2006 May; 38(3-5):284-8. PubMed ID: 16678253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers.
    Pérez-Rigueiro J; Madurga R; Gañán-Calvo AM; Elices M; Guinea GV; Tasei Y; Nishimura A; Matsuda H; Asakura T
    Sci Rep; 2019 Feb; 9(1):2398. PubMed ID: 30787337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.