BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33463376)

  • 1. A study on safe forceps grip force for the intestinal tract using haptic technology.
    Yatabe K; Ozawa S; Oguma J; Hiraiwa S; Tomita S; Matsunaga T; Togashi N; Yokoyama M; Shimono T; Ohnishi K
    Minim Invasive Ther Allied Technol; 2022 Apr; 31(4):573-579. PubMed ID: 33463376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New device with force sensors for laparoscopic liver resection - investigation of grip force and histological damage.
    Okuda Y; Nakai A; Sato T; Kurata M; Shimoyama I; Oda T; Ohkohci N
    Minim Invasive Ther Allied Technol; 2022 Jan; 31(1):28-33. PubMed ID: 32468887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Evaluation of a Hybrid Sensory Feedback System for Haptic and Kinaesthetic Perception in Hand Prostheses.
    Sariyildiz E; Hanss F; Zhou H; Sreenivasa M; Armitage L; Mutlu R; Alici G
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in grip forces among various robotic instruments and da Vinci surgical platforms.
    Mucksavage P; Kerbl DC; Pick DL; Lee JY; McDougall EM; Louie MK
    J Endourol; 2011 Mar; 25(3):523-8. PubMed ID: 21235410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to reduce the risk of organ injuries during surgical instrument insertion in laparoscopic surgery: Pushing/pressing force analysis using forceps with sensors.
    Makiyama K; Osaka K; Araki A; Ohtake S; Tatenuma T; Nagasaka M; Yamada T; Yao M
    Asian J Endosc Surg; 2021 Jul; 14(3):504-510. PubMed ID: 33258261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grip Force Control During Virtual Interaction With Deformable and Rigid Objects Via a Haptic Gripper.
    Milstein A; Alyagon L; Nisky I
    IEEE Trans Haptics; 2021; 14(3):564-576. PubMed ID: 33606636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the performance of experienced and novice surgeons: measurement of gripping force during laparoscopic surgery performed on pigs using forceps with pressure sensors.
    Araki A; Makiyama K; Yamanaka H; Ueno D; Osaka K; Nagasaka M; Yamada T; Yao M
    Surg Endosc; 2017 Apr; 31(4):1999-2005. PubMed ID: 27572059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery.
    Deshpande N; Chauhan M; Pacchierotti C; Prattichizzo D; Caldwell DG; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5156-5159. PubMed ID: 28269426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
    Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB
    J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Medical Shark Skin Forceps: Improved Grasping Power and Easy Manipulation.
    Takamura Y; Tominaga T; Zhu R; Yamamoto I; Matsumoto K; Nagayasu T
    JSLS; 2023; 27(4):. PubMed ID: 37936580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Variability in Stiffness on Perception and Grip Force Adjustment.
    Kossowsky H; Farajian M; Milstein A; Nisky I
    IEEE Trans Haptics; 2021; 14(3):513-525. PubMed ID: 33449879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of novel force-limiting grasping forceps with a simple mechanism.
    Sakaguchi Y; Sato T; Yutaka Y; Muranishi Y; Komatsu T; Yoshizawa A; Nakajima N; Nakamura T; Date H
    Eur J Cardiothorac Surg; 2018 Dec; 54(6):1004-1012. PubMed ID: 29878096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of pliers' grip spans in the maximum gripping task and sub-maximum cutting task.
    Kim DM; Kong YK
    Int J Occup Saf Ergon; 2016 Dec; 22(4):449-456. PubMed ID: 27064491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of externally generated loading on predictive grip force modulation.
    Witney AG; Wolpert DM
    Neurosci Lett; 2007 Feb; 414(1):10-5. PubMed ID: 17289265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained handgrip force decreases upper extremity muscle activation and arm strength.
    Smets MP; Potvin JR; Keir PJ
    Ergonomics; 2009 Sep; 52(9):1144-52. PubMed ID: 19606369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force distribution of a cylindrical grip differs between dominant and nondominant hand in healthy subjects.
    Cai A; Pingel I; Lorz D; Beier JP; Horch RE; Arkudas A
    Arch Orthop Trauma Surg; 2018 Sep; 138(9):1323-1331. PubMed ID: 29992376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiaxis grip characteristics for varying handle diameters and effort.
    Irwin CB; Towles JD; Radwin RG
    Hum Factors; 2015 Mar; 57(2):227-37. PubMed ID: 25850154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A grasping forceps with a triaxial MEMS tactile sensor for quantification of stresses on organs.
    Kuwana K; Nakai A; Masamune K; Dohi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4490-3. PubMed ID: 24110731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.