These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33463630)

  • 1. Stability, edge passivation effect, electronic and transport properties of POPGraphene nanoribbons.
    Mota EAV; Moura-Moreira M; Siqueira MRS; da Silva CAB; Del Nero J
    Phys Chem Chem Phys; 2021 Jan; 23(3):2483-2490. PubMed ID: 33463630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and transport properties of new carbon nanoribbons with 5-8-5 carbon rings: tuning stability by the edge shape effect.
    Mota EAV; da Silva CAB; Del Nero J
    Phys Chem Chem Phys; 2022 Dec; 24(48):29966-29976. PubMed ID: 36468821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning electronic properties of boron phosphide nanoribbons by edge passivation and deformation.
    Dai X; Zhang L; Jiang Y; Li H
    Phys Chem Chem Phys; 2019 Jul; 21(28):15392-15399. PubMed ID: 31276127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of electronic transport through P-porphyrin and S-porphyrin nanoribbons.
    Mondal R; Bhattacharya B; Singh NB; Sarkar U
    J Mol Graph Model; 2020 Jun; 97():107543. PubMed ID: 32006741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transport properties of PtSe
    Zheng P; Jiang Y; Li H; Dai X
    RSC Adv; 2022 Sep; 12(40):25872-25880. PubMed ID: 36199596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles investigations for the electronic and transport properties of zigzag SiC nanoribbons with Fluorine passivation/adsorption.
    Nemu A; Jaiswal NK
    J Mol Graph Model; 2023 May; 120():108416. PubMed ID: 36696742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanointerconnect design based on edge fluorinated/hydrogenated zigzag borophene nanoribbons: an
    Kharwar S; Singh S; Jaiswal NK; Mohammed MKA
    Phys Chem Chem Phys; 2023 Feb; 25(6):5122-5129. PubMed ID: 36722994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation.
    Guo C; Wang T; Xia C; Liu Y
    Sci Rep; 2017 Oct; 7(1):12799. PubMed ID: 28993688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the enhancement of the thermoelectric properties of bilayer graphyne nanoribbons.
    C M Rodrigues D; L Lage L; Venezuela P; Latgé A
    Phys Chem Chem Phys; 2022 Apr; 24(16):9324-9332. PubMed ID: 35383347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles study of heat transport properties of graphene nanoribbons.
    Tan ZW; Wang JS; Gan CK
    Nano Lett; 2011 Jan; 11(1):214-9. PubMed ID: 21158401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfect spin-filtering effect in molecular junctions based on half-metallic penta-hexa-graphene nanoribbons.
    Deng YX; Chen SZ; Hong J; Jia PZ; Zhang Y; Yu X; Chen KQ
    J Phys Condens Matter; 2022 May; 34(28):. PubMed ID: 35477168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.