These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33463641)

  • 1. Nanoscopic observation of a DNA crystal surface and its dynamic formation and degradation using atomic force microscopy.
    Eki H; Abe K; Sugiyama H; Endo M
    Chem Commun (Camb); 2021 Feb; 57(13):1651-1654. PubMed ID: 33463641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging DNA Structure by Atomic Force Microscopy.
    Pyne AL; Hoogenboom BW
    Methods Mol Biol; 2016; 1431():47-60. PubMed ID: 27283301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution atomic force microscopy of DNA.
    Klinov DV; Neretina TV; Prokhorov VV; Dobrynina TV; Aldarov KG; Demin VV
    Biochemistry (Mosc); 2009 Oct; 74(10):1150-4. PubMed ID: 19916928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy applications in macromolecular crystallography.
    McPherson A; Malkin AJ; Kuznetsov YG; Plomp M
    Acta Crystallogr D Biol Crystallogr; 2001 Aug; 57(Pt 8):1053-60. PubMed ID: 11468388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy.
    Pyne A; Thompson R; Leung C; Roy D; Hoogenboom BW
    Small; 2014 Aug; 10(16):3257-61. PubMed ID: 24740866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and self-assembly of two-dimensional DNA crystals.
    Winfree E; Liu F; Wenzler LA; Seeman NC
    Nature; 1998 Aug; 394(6693):539-44. PubMed ID: 9707114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFM-based single-molecule observation of the conformational changes of DNA structures.
    Endo M
    Methods; 2019 Oct; 169():3-10. PubMed ID: 30978504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress in the applications of high-speed atomic force microscopy in cell biology].
    Liu L; Wei Y; Liu W; Sun T; Wang K; Wang Y; Li B
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Jul; 38(8):931-937. PubMed ID: 30187879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.
    Meroni A; Lazzaro F; Muzi-Falconi M; Podestà A
    Methods Mol Biol; 2018; 1672():557-573. PubMed ID: 29043648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of single molecule conformational change of tight-turn paperclip DNA triplex in solution.
    Liu CP; Wey MT; Chang CC; Kan LS
    Appl Biochem Biotechnol; 2009 Oct; 159(1):261-9. PubMed ID: 18931945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crystal growth investigations using atomic force microscopy.
    McPherson A; Kuznetsov YG; Malkin AJ; Plomp M
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):21-3. PubMed ID: 14646124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy in the study of macromolecular crystal growth.
    McPherson A; Malkin AJ; Kuznetsov YuG
    Annu Rev Biophys Biomol Struct; 2000; 29():361-410. PubMed ID: 10940253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudohexagonal 2D DNA crystals from double crossover cohesion.
    Ding B; Sha R; Seeman NC
    J Am Chem Soc; 2004 Aug; 126(33):10230-1. PubMed ID: 15315420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA nanotubes assembled from tensegrity triangle tiles with circular DNA scaffolds.
    Afshan N; Ali M; Wang M; Baig MMFA; Xiao SJ
    Nanoscale; 2017 Nov; 9(44):17181-17185. PubMed ID: 29091094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic degradation processes of lamellar crystals in thin films for poly[(R)-3-hydroxybutyric acid] and its copolymers revealed by real-time atomic force microscopy.
    Numata K; Hirota T; Kikkawa Y; Tsuge T; Iwata T; Abe H; Doi Y
    Biomacromolecules; 2004; 5(6):2186-94. PubMed ID: 15530032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ atomic force microscopy observation of enzymatic degradation in poly(hydroxyalkanoic acid) thin films: normal and constrained conditions.
    Kikkawa Y; Hirota T; Numata K; Tsuge T; Abe H; Iwata T; Doi Y
    Macromol Biosci; 2004 Mar; 4(3):276-85. PubMed ID: 15468218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.
    Evans CG; Hariadi RF; Winfree E
    J Am Chem Soc; 2012 Jun; 134(25):10485-92. PubMed ID: 22694312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.