These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33463779)

  • 1. Extended predicted mean vote of thermal adaptations reinforced around thermal neutrality.
    Zhang S; Lin Z
    Indoor Air; 2021 Jul; 31(4):1227. PubMed ID: 33463779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive-rational thermal comfort model: Adaptive predicted mean vote with variable adaptive coefficient.
    Zhang S; Lin Z
    Indoor Air; 2020 Sep; 30(5):1052-1062. PubMed ID: 32155288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal sensations and comfort investigations in transient conditions in tropical office.
    Dahlan ND; Gital YY
    Appl Ergon; 2016 May; 54():169-76. PubMed ID: 26851476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forty years of Fanger's model of thermal comfort: comfort for all?
    van Hoof J
    Indoor Air; 2008 Jun; 18(3):182-201. PubMed ID: 18363685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification and verification of the PMV model to improve thermal comfort prediction at low pressure.
    Zhou B; Huang Y; Nie J; Ding L; Sun C; Chen B
    J Therm Biol; 2023 Oct; 117():103722. PubMed ID: 37832334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis of the effect of current mood states on the thermal sensation in educational buildings.
    Özbey MF; Çeter AE; Örfioğlu Ş; Alkan N; Turhan C
    Indoor Air; 2022 Aug; 32(8):e13073. PubMed ID: 36040278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comprehensive impact of thermal-PM2.5 interaction on subjective evaluation of urban outdoor space: A pilot study in a cold region of China.
    Lin D; Gao S; Zhen M
    PLoS One; 2024; 19(5):e0304617. PubMed ID: 38820509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field study of neutrality cabin temperature for Chinese passenger in economy class of civil aircraft.
    Liping P; Jie Z; Xiaoru W; Jun F; Shuxin L
    J Therm Biol; 2018 Dec; 78():312-319. PubMed ID: 30509653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A regression-based three-phase approach to assess outdoor thermal comfort in informal micro-entrepreneurial settings in tropical Mumbai.
    Banerjee S; Middel A; Chattopadhyay S
    Int J Biometeorol; 2022 Feb; 66(2):313-329. PubMed ID: 33929628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong.
    Cheng V; Ng E; Chan C; Givoni B
    Int J Biometeorol; 2012 Jan; 56(1):43-56. PubMed ID: 21197549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities.
    Sharifi E; Boland J
    Int J Biometeorol; 2020 Feb; 64(2):231-242. PubMed ID: 29916046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving rational thermal comfort prediction by using subpopulation characteristics: A case study at Hermitage Amsterdam.
    Kramer R; Schellen L; Schellen H; Kingma B
    Temperature (Austin); 2017; 4(2):187-197. PubMed ID: 28680934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of indoor thermal comfort temperature and related behavioural adaptations: a systematic review.
    Arsad FS; Hod R; Ahmad N; Baharom M; Ja'afar MH
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73137-73149. PubMed ID: 37211568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments.
    Hwang RL; Chen CP
    Indoor Air; 2010 Jun; 20(3):235-45. PubMed ID: 20573123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.
    Zhang Y; Chen H; Wang J; Meng Q
    Indoor Air; 2016 Oct; 26(5):820-30. PubMed ID: 26451532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal comfort assessment of a surgical room through computational fluid dynamics using local PMV index.
    Rodrigues NJ; Oliveira RF; Teixeira SF; Miguel AS; Teixeira JC; Baptista JS
    Work; 2015; 51(3):445-56. PubMed ID: 24939121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold but comfortable? Application of comfort criteria to cold environments.
    Holmér I
    Indoor Air; 2004; 14 Suppl 7():27-31. PubMed ID: 15330768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the effects of face masks on thermal comfort in Guangzhou, China.
    Tang T; Zhu Y; Zhou X; Guo Z; Mao Y; Jiang H; Fang Z; Zheng Z; Chen X
    Build Environ; 2022 Apr; 214():108932. PubMed ID: 35221454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven adaptive GM(1,1) time series prediction model for thermal comfort.
    Li X; Xu C; Wang K; Yang X; Li Y
    Int J Biometeorol; 2023 Aug; 67(8):1335-1344. PubMed ID: 37347280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.