BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 33463957)

  • 21. Application of machine learning classifiers to X-ray diffraction imaging with medically relevant phantoms.
    Stryker S; Kapadia AJ; Greenberg JA
    Med Phys; 2022 Jan; 49(1):532-546. PubMed ID: 34799852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers.
    Kang J; Ullah Z; Gwak J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing machine-learning classifiers using noise, bubbles, and reverse correlation.
    Thoret E; Andrillon T; Léger D; Pressnitzer D
    J Neurosci Methods; 2021 Oct; 362():109297. PubMed ID: 34320410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders.
    Fricke C; Alizadeh J; Zakhary N; Woost TB; Bogdan M; Classen J
    Front Neurol; 2021; 12():666458. PubMed ID: 34093413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning approach to improve the recognition of hand gesture with multi force variation using electromyography signal from amputees.
    Triwiyanto T; Pawana IPA; Caesarendra W
    Med Eng Phys; 2024 Mar; 125():104131. PubMed ID: 38508805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning.
    Lu Y; Wang H; Hu F; Zhou B; Xi H
    Med Biol Eng Comput; 2021 Apr; 59(4):883-899. PubMed ID: 33745104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning Assisted Neonatal Cry Classification
    K A; Vincent PMDR; Srinivasan K; Chang CY
    Front Public Health; 2021; 9():670352. PubMed ID: 34178926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The classification of movement intention through machine learning models: the identification of significant time-domain EMG features.
    Mohd Khairuddin I; Sidek SN; P P Abdul Majeed A; Mohd Razman MA; Ahmad Puzi A; Md Yusof H
    PeerJ Comput Sci; 2021; 7():e379. PubMed ID: 33817026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the methods of feature extraction based on electromyographic signal classification.
    Zhang X; Zhang M
    Med Biol Eng Comput; 2023 Jul; 61(7):1773-1781. PubMed ID: 36894795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A low-cost vision system based on the analysis of motor features for recognition and severity rating of Parkinson's Disease.
    Buongiorno D; Bortone I; Cascarano GD; Trotta GF; Brunetti A; Bevilacqua V
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):243. PubMed ID: 31830986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Multi-Window Majority Voting Strategy to Improve Hand Gesture Recognition Accuracies Using Electromyography Signal.
    Wahid MF; Tafreshi R; Langari R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):427-436. PubMed ID: 31870989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults.
    Alizadeh J; Bogdan M; Classen J; Fricke C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning Algorithms for Processing and Classifying Unsegmented Phonocardiographic Signals: An Efficient Edge Computing Solution Suitable for Wearable Devices.
    De Fazio R; Spongano L; De Vittorio M; Patrono L; Visconti P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks.
    Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Improved Performance of Deep Learning Based on Convolution Neural Network to Classify the Hand Motion by Evaluating Hyper Parameter.
    Triwiyanto T; Pawana IPA; Purnomo MH
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1678-1688. PubMed ID: 32634104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.