BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 33464043)

  • 61. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis.
    Shen W; Zhang J; Geng B; Qiu M; Hu M; Yang Q; Bao W; Xiao Y; Zheng Y; Peng W; Zhang G; Ma L; Yang S
    Microb Cell Fact; 2019 Oct; 18(1):162. PubMed ID: 31581942
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Battling CRISPR-Cas9 off-target genome editing.
    Li D; Zhou H; Zeng X
    Cell Biol Toxicol; 2019 Oct; 35(5):403-406. PubMed ID: 31313008
    [No Abstract]   [Full Text] [Related]  

  • 64. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Minimizing off-target effects in CRISPR-Cas9 genome editing.
    Chen SJ
    Cell Biol Toxicol; 2019 Oct; 35(5):399-401. PubMed ID: 31317359
    [No Abstract]   [Full Text] [Related]  

  • 66. Improved prime editing allows for routine predictable gene editing in Physcomitrium patens.
    Perroud PF; Guyon-Debast A; Casacuberta JM; Paul W; Pichon JP; Comeau D; Nogué F
    J Exp Bot; 2023 Oct; 74(19):6176-6187. PubMed ID: 37243510
    [TBL] [Abstract][Full Text] [Related]  

  • 67. New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi.
    Vyas VK; Bushkin GG; Bernstein DA; Getz MA; Sewastianik M; Barrasa MI; Bartel DP; Fink GR
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29695624
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9.
    Bauer DE; Canver MC; Orkin SH
    J Vis Exp; 2015 Jan; (95):e52118. PubMed ID: 25549070
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications.
    Batzir NA; Tovin A; Hendel A
    Pediatr Endocrinol Rev; 2017 Jun; 14(4):353-363. PubMed ID: 28613045
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion.
    Ge DT; Tipping C; Brodsky MH; Zamore PD
    G3 (Bethesda); 2016 Oct; 6(10):3197-3206. PubMed ID: 27543296
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.
    Hess GT; Tycko J; Yao D; Bassik MC
    Mol Cell; 2017 Oct; 68(1):26-43. PubMed ID: 28985508
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.
    Liu DY; Qiu T; Ding XH; Li M; Zhu MY; Wang JH
    Yi Chuan; 2016 Aug; 38(8):756-64. PubMed ID: 27531614
    [TBL] [Abstract][Full Text] [Related]  

  • 74. PASTE: a high-throughput method for large DNA insertions.
    Awan MJA; Mahmood MA; Naqvi RZ; Mansoor S
    Trends Plant Sci; 2023 May; 28(5):509-511. PubMed ID: 36898908
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome Editing in Potato with CRISPR/Cas9.
    Nadakuduti SS; Starker CG; Voytas DF; Buell CR; Douches DS
    Methods Mol Biol; 2019; 1917():183-201. PubMed ID: 30610637
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells.
    Tao R; Wang Y; Jiao Y; Hu Y; Li L; Jiang L; Zhou L; Qu J; Chen Q; Yao S
    Nucleic Acids Res; 2022 Jun; 50(11):6423-6434. PubMed ID: 35687127
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
    Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G
    Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview.
    Araldi RP; Khalil C; Grignet PH; Teixeira MR; de Melo TC; Módolo DG; Fernandes LGV; Ruiz J; de Souza EB
    Gene; 2020 Jun; 745():144636. PubMed ID: 32244056
    [TBL] [Abstract][Full Text] [Related]  

  • 80. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.