These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33464071)

  • 1. Coaxial Extrusion of Tubular Tissue Constructs Using a Gelatin/GelMA Blend Bioink.
    Wang Y; Kankala RK; Zhu K; Wang SB; Zhang YS; Chen AZ
    ACS Biomater Sci Eng; 2019 Oct; 5(10):5514-5524. PubMed ID: 33464071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels.
    Chansoria P; Asif S; Polkoff K; Chung J; Piedrahita JA; Shirwaiker RA
    ACS Biomater Sci Eng; 2021 Nov; 7(11):5175-5188. PubMed ID: 34597013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling.
    Mirani B; Stefanek E; Godau B; Hossein Dabiri SM; Akbari M
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3269-3280. PubMed ID: 34142796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide Chitosan/Dextran Core/Shell Vascularized 3D Constructs for Wound Healing.
    Turner PR; Murray E; McAdam CJ; McConnell MA; Cabral JD
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32328-32339. PubMed ID: 32597164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
    Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC
    Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues.
    Pi Q; Maharjan S; Yan X; Liu X; Singh B; van Genderen AM; Robledo-Padilla F; Parra-Saldivar R; Hu N; Jia W; Xu C; Kang J; Hassan S; Cheng H; Hou X; Khademhosseini A; Zhang YS
    Adv Mater; 2018 Oct; 30(43):e1706913. PubMed ID: 30136318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering.
    Wu Z; Cai H; Ao Z; Xu J; Heaps S; Guo F
    Adv Mater Technol; 2021 Aug; 6(8):. PubMed ID: 34458563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers.
    Shao L; Gao Q; Zhao H; Xie C; Fu J; Liu Z; Xiang M; He Y
    Small; 2018 Nov; 14(44):e1802187. PubMed ID: 30253060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial bioprinting of cell-laden vascular constructs using a gelatin-tyramine bioink.
    Hong S; Kim JS; Jung B; Won C; Hwang C
    Biomater Sci; 2019 Nov; 7(11):4578-4587. PubMed ID: 31433402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Coaxial Bioprinting of Hollow, Standalone, and Perfusable Vascular Conduits.
    Maharjan S; He JJ; Lv L; Wang D; Zhang YS
    Methods Mol Biol; 2022; 2375():61-75. PubMed ID: 34591299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications.
    Wang Z; Tian Z; Menard F; Kim K
    Biofabrication; 2017 Aug; 9(4):044101. PubMed ID: 28770808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies.
    Bertlein S; Brown G; Lim KS; Jungst T; Boeck T; Blunk T; Tessmar J; Hooper GJ; Woodfield TBF; Groll J
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29044686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible light-based stereolithography bioprinting of cell-adhesive gelatin hydrogels.
    Zongjie Wang ; Zhenlin Tian ; Xian Jin ; Holzman JF; Menard F; Keekyoung Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1599-1602. PubMed ID: 29060188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise Printing of Microfiber Scaffold with Gelatin Methacryloyl (GelMA)/Polyethylene Oxide (PEO) Bioink.
    Li H; Zhou R; Shu Q; Xie M; He Y
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.
    Cha C; Oh J; Kim K; Qiu Y; Joh M; Shin SR; Wang X; Camci-Unal G; Wan KT; Liao R; Khademhosseini A
    Biomacromolecules; 2014 Jan; 15(1):283-90. PubMed ID: 24344625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.