BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 33464450)

  • 1. Automatic airway tree segmentation based on multi-scale context information.
    Zhou K; Chen N; Xu X; Wang Z; Guo J; Liu L; Yi Z
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):219-230. PubMed ID: 33464450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-to-fine airway segmentation using multi information fusion network and CNN-based region growing.
    Guo J; Fu R; Pan L; Zheng S; Huang L; Zheng B; He B
    Comput Methods Programs Biomed; 2022 Mar; 215():106610. PubMed ID: 35077902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An end-to-end multi-scale airway segmentation framework based on pulmonary CT image.
    Yuan Y; Tan W; Xu L; Bao N; Zhu Q; Wang Z; Wang R
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657624
    [No Abstract]   [Full Text] [Related]  

  • 4. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Region growing algorithm combined with morphology and skeleton analysis for segmenting airway tree in CT images.
    Duan HH; Gong J; Sun XW; Nie SD
    J Xray Sci Technol; 2020; 28(2):311-331. PubMed ID: 32039883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LTSP: long-term slice propagation for accurate airway segmentation.
    Wu Y; Zhang M; Yu W; Zheng H; Xu J; Gu Y
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):857-865. PubMed ID: 35294715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi.
    Nemoto T; Futakami N; Yagi M; Kumabe A; Takeda A; Kunieda E; Shigematsu N
    J Radiat Res; 2020 Mar; 61(2):257-264. PubMed ID: 32043528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving airway segmentation in computed tomography using leak detection with convolutional networks.
    Charbonnier JP; Rikxoort EMV; Setio AAA; Schaefer-Prokop CM; Ginneken BV; Ciompi F
    Med Image Anal; 2017 Feb; 36():52-60. PubMed ID: 27842236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction.
    Dudurych I; Garcia-Uceda A; Petersen J; Du Y; Vliegenthart R; de Bruijne M
    Eur Radiol; 2023 Oct; 33(10):6718-6725. PubMed ID: 37071168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network.
    Zhang J; Ding X; Hu D; Jiang Y
    Sci Rep; 2022 Feb; 12(1):1847. PubMed ID: 35115573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans.
    Lee M; Lee JG; Kim N; Seo JB; Lee SM
    J Digit Imaging; 2019 Oct; 32(5):779-792. PubMed ID: 30465140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale and multi-view network for lung tumor segmentation.
    Liu C; Liu H; Zhang X; Guo J; Lv P
    Comput Biol Med; 2024 Apr; 172():108250. PubMed ID: 38493603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided pulmonary image analysis in small animal models.
    Xu Z; Bagci U; Mansoor A; Kramer-Marek G; Luna B; Kubler A; Dey B; Foster B; Papadakis GZ; Camp JV; Jonsson CB; Bishai WR; Jain S; Udupa JK; Mollura DJ
    Med Phys; 2015 Jul; 42(7):3896-910. PubMed ID: 26133591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans.
    Fabijańska A
    Comput Med Imaging Graph; 2009 Oct; 33(7):537-46. PubMed ID: 19473814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airway tree reconstruction in expiration chest CT scans facilitated by information transfer from corresponding inspiration scans.
    Bauer C; Eberlein M; Beichel RR
    Med Phys; 2016 Mar; 43(3):1312-23. PubMed ID: 26936716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation and suppression of pulmonary vessels in low-dose chest CT scans.
    Gu X; Wang J; Zhao J; Li Q
    Med Phys; 2019 Aug; 46(8):3603-3614. PubMed ID: 31240721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated labeling of the airway tree in terms of lobes based on deep learning of bifurcation point detection.
    Wang M; Jin R; Jiang N; Liu H; Jiang S; Li K; Zhou X
    Med Biol Eng Comput; 2020 Sep; 58(9):2009-2024. PubMed ID: 32613598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.