These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 33464483)

  • 21. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival.
    Dayon A; Brizuela L; Martin C; Mazerolles C; Pirot N; Doumerc N; Nogueira L; Golzio M; Teissié J; Serre G; Rischmann P; Malavaud B; Cuvillier O
    PLoS One; 2009 Nov; 4(11):e8048. PubMed ID: 19956567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metformin represses androgen-dependent and androgen-independent prostate cancers by targeting androgen receptor.
    Wang Y; Liu G; Tong D; Parmar H; Hasenmayer D; Yuan W; Zhang D; Jiang J
    Prostate; 2015 Aug; 75(11):1187-96. PubMed ID: 25894097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prolonged exposure to (R)-bicalutamide generates a LNCaP subclone with alteration of mitochondrial genome.
    Pignatta S; Arienti C; Zoli W; Di Donato M; Castoria G; Gabucci E; Casadio V; Falconi M; De Giorgi U; Silvestrini R; Tesei A
    Mol Cell Endocrinol; 2014 Jan; 382(1):314-324. PubMed ID: 24397920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of an anabolic selective androgen receptor modulator that actively induces death of androgen-independent prostate cancer cells.
    Schmidt A; Meissner RS; Gentile MA; Chisamore MJ; Opas EE; Scafonas A; Cusick TE; Gambone C; Pennypacker B; Hodor P; Perkins JJ; Bai C; Ferraro D; Bettoun DJ; Wilkinson HA; Alves SE; Flores O; Ray WJ
    J Steroid Biochem Mol Biol; 2014 Sep; 143():29-39. PubMed ID: 24565564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protocadherin B9 promotes resistance to bicalutamide and is associated with the survival of prostate cancer patients.
    Sekino Y; Oue N; Mukai S; Shigematsu Y; Goto K; Sakamoto N; Sentani K; Hayashi T; Teishima J; Matsubara A; Yasui W
    Prostate; 2019 Feb; 79(2):234-242. PubMed ID: 30324761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crosstalk Between Androgen-sensitive and Androgen-insensitive Prostate Cancer Cells.
    Takezawa Y; Izumi K; Machioka K; Iwamoto H; Naito R; Makino T; Kadomoto S; Natsagdorj A; Kadono Y; Keller ET; Zhang J; Mizokami A
    Anticancer Res; 2018 Apr; 38(4):2045-2055. PubMed ID: 29599322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of treatment with androgen receptor ligands on microRNA expression of prostate cancer cells.
    Segal CV; Koufaris C; Powell C; Gooderham NJ
    Toxicology; 2015 Jul; 333():45-52. PubMed ID: 25846647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Up-regulation of insulin-like growth factor-binding protein 3 by 5-fluorouracil (5-FU) leads to the potent anti-proliferative effect of androgen deprivation therapy combined with 5-FU in human prostate cancer cell lines.
    Kawabata R; Oie S; Takahashi M; Kanayama H; Oka T; Itoh K
    Int J Oncol; 2011 Jun; 38(6):1489-500. PubMed ID: 21455575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development.
    Wang Q; Hardie RA; Hoy AJ; van Geldermalsen M; Gao D; Fazli L; Sadowski MC; Balaban S; Schreuder M; Nagarajah R; Wong JJ; Metierre C; Pinello N; Otte NJ; Lehman ML; Gleave M; Nelson CC; Bailey CG; Ritchie W; Rasko JE; Holst J
    J Pathol; 2015 Jul; 236(3):278-89. PubMed ID: 25693838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth.
    Ye J; Huang Q; Xu J; Huang J; Wang J; Zhong W; Chen W; Lin X; Lin X
    J Cancer Res Clin Oncol; 2018 May; 144(5):821-833. PubMed ID: 29435734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AT-101 (R-(-)-gossypol acetic acid) enhances the effectiveness of androgen deprivation therapy in the VCaP prostate cancer model.
    McGregor N; Patel L; Craig M; Weidner S; Wang S; Pienta KJ
    J Cell Biochem; 2010 Aug; 110(5):1187-94. PubMed ID: 20589722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile.
    Vaz CV; Alves MG; Marques R; Moreira PI; Oliveira PF; Maia CJ; Socorro S
    Int J Biochem Cell Biol; 2012 Nov; 44(11):2077-84. PubMed ID: 22964025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classical and Non-Classical Roles for Pre-Receptor Control of DHT Metabolism in Prostate Cancer Progression.
    Zhang A; Zhang J; Plymate S; Mostaghel EA
    Horm Cancer; 2016 Apr; 7(2):104-13. PubMed ID: 26797685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy.
    Mukha A; Kahya U; Linge A; Chen O; Löck S; Lukiyanchuk V; Richter S; Alves TC; Peitzsch M; Telychko V; Skvortsov S; Negro G; Aschenbrenner B; Skvortsova II; Mirtschink P; Lohaus F; Hölscher T; Neubauer H; Rivandi M; Labitzky V; Lange T; Franken A; Behrens B; Stoecklein NH; Toma M; Sommer U; Zschaeck S; Rehm M; Eisenhofer G; Schwager C; Abdollahi A; Groeben C; Kunz-Schughart LA; Baretton GB; Baumann M; Krause M; Peitzsch C; Dubrovska A
    Theranostics; 2021; 11(16):7844-7868. PubMed ID: 34335968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antagonistic interaction between bicalutamide (Casodex) and radiation in androgen-positive prostate cancer LNCaP cells.
    Quéro L; Giocanti N; Hennequin C; Favaudon V
    Prostate; 2010 Mar; 70(4):401-11. PubMed ID: 19902473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer.
    Xu L; Yin Y; Li Y; Chen X; Chang Y; Zhang H; Liu J; Beasley J; McCaw P; Zhang H; Young S; Groth J; Wang Q; Locasale JW; Gao X; Tang DG; Dong X; He Y; George D; Hu H; Huang J
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells.
    Luo Y; Li W; Ling Z; Hu Q; Fan Z; Cheng B; Tao X
    Cancer Med; 2020 May; 9(10):3489-3499. PubMed ID: 32162845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells.
    Xu M; Sakamoto S; Matsushima J; Kimura T; Ueda T; Mizokami A; Kanai Y; Ichikawa T
    J Urol; 2016 May; 195(5):1588-1597. PubMed ID: 26682754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance.
    Wu X; Deng F; Li Y; Daniels G; Du X; Ren Q; Wang J; Wang LH; Yang Y; Zhang V; Zhang D; Ye F; Melamed J; Monaco ME; Lee P
    Oncotarget; 2015 Dec; 6(42):44849-63. PubMed ID: 26636648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Additive antitumor effects of the epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib (Iressa), and the nonsteroidal antiandrogen, bicalutamide (Casodex), in prostate cancer cells in vitro.
    Festuccia C; Gravina GL; Angelucci A; Millimaggi D; Muzi P; Vicentini C; Bologna M
    Int J Cancer; 2005 Jul; 115(4):630-40. PubMed ID: 15700310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.