These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33464858)

  • 1. Neurotrophin-3-Loaded Multichannel Nanofibrous Scaffolds Promoted Anti-Inflammation, Neuronal Differentiation, and Functional Recovery after Spinal Cord Injury.
    Sun X; Zhang C; Xu J; Zhai H; Liu S; Xu Y; Hu Y; Long H; Bai Y; Quan D
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1228-1238. PubMed ID: 33464858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Multichannel Poly(Propylene Fumarate)-Collagen Scaffold with Collagen-Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury.
    Chen X; Zhao Y; Li X; Xiao Z; Yao Y; Chu Y; Farkas B; Romano I; Brandi F; Dai J
    Adv Healthc Mater; 2018 Jul; 7(14):e1800315. PubMed ID: 29920990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHBV/PLA/Col-Based Nanofibrous Scaffolds Promote Recovery of Locomotor Function by Decreasing Reactive Astrogliosis in a Hemisection Spinal Cord Injury Rat Model.
    Zhao T; Jing Y; Zhou X; Wang J; Huang X; Gao L; Zhu Y; Wang L; Gou Z; Liang C; Xu K; Li F; Chen Q
    J Biomed Nanotechnol; 2018 Nov; 14(11):1921-1933. PubMed ID: 30165928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words).
    Wang XH; Tang XC; Li X; Qin JZ; Zhong WT; Wu P; Zhang F; Shen YX; Dai TT
    Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):699-708. PubMed ID: 34882059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury.
    Sun X; Bai Y; Zhai H; Liu S; Zhang C; Xu Y; Zou J; Wang T; Chen S; Zhu Q; Liu X; Mao H; Quan D
    Acta Biomater; 2019 Mar; 86():194-206. PubMed ID: 30586646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury.
    Yang EZ; Zhang GW; Xu JG; Chen S; Wang H; Cao LL; Liang B; Lian XF
    Acta Pharmacol Sin; 2017 May; 38(5):623-637. PubMed ID: 28392569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binary scaffold facilitates in situ regeneration of axons and neurons for complete spinal cord injury repair.
    Liu D; Shu M; Liu W; Shen Y; Long G; Zhao Y; Hou X; Xiao Z; Dai J; Li X
    Biomater Sci; 2021 Apr; 9(8):2955-2971. PubMed ID: 33634811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Promotion of transplanted collagen scaffolds combined with brain-derived neurotrophic factor for axonal regeneration and motor function recovery in rats after transected spinal cord injury].
    Chen X; Fan Y; Xiao Z; Li X; Yang B; Zhao Y; Hou X; Han S; Dai J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):650-659. PubMed ID: 29905040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.
    Yao L; Daly W; Newland B; Yao S; Wang W; Chen BK; Madigan N; Windebank A; Pandit A
    Gene Ther; 2013 Dec; 20(12):1149-57. PubMed ID: 23883961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats.
    Kaneko A; Matsushita A; Sankai Y
    Biomed Mater; 2015 Jan; 10(1):015008. PubMed ID: 25585935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats.
    Raynald ; Shu B; Liu XB; Zhou JF; Huang H; Wang JY; Sun XD; Qin C; An YH
    CNS Neurosci Ther; 2019 Sep; 25(9):951-964. PubMed ID: 31486601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection.
    Du BL; Zeng X; Ma YH; Lai BQ; Wang JM; Ling EA; Wu JL; Zeng YS
    J Biomed Mater Res A; 2015 Apr; 103(4):1533-45. PubMed ID: 25046856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats.
    Chen BK; Madigan NN; Hakim JS; Dadsetan M; McMahon SS; Yaszemski MJ; Windebank AJ
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e398-e407. PubMed ID: 28296347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord.
    Olson HE; Rooney GE; Gross L; Nesbitt JJ; Galvin KE; Knight A; Chen B; Yaszemski MJ; Windebank AJ
    Tissue Eng Part A; 2009 Jul; 15(7):1797-805. PubMed ID: 19191513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
    Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH
    Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.