These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33465399)

  • 1. Mechanisms and functions of calcium microdomains produced by ORAI channels, d-myo-inositol 1,4,5-trisphosphate receptors, or ryanodine receptors.
    Guse AH; Gil Montoya DC; Diercks BP
    Pharmacol Ther; 2021 Jul; 223():107804. PubMed ID: 33465399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Model of Sub-Plasmalemmal Ca
    Gil D; Guse AH; Dupont G
    Front Immunol; 2021; 12():659790. PubMed ID: 33995380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium microdomains: organization and function.
    Berridge MJ
    Cell Calcium; 2006; 40(5-6):405-12. PubMed ID: 17030366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria.
    Straub SV; Giovannucci DR; Yule DI
    J Gen Physiol; 2000 Oct; 116(4):547-60. PubMed ID: 11004204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate.
    Cancela JM; Gerasimenko OV; Gerasimenko JV; Tepikin AV; Petersen OH
    EMBO J; 2000 Jun; 19(11):2549-57. PubMed ID: 10835353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the Inositol 1,4,5-Trisphosphate Receptor and the Ryanodine Receptor Ca
    Nordenskjöld F; Andersson B; Islam MS
    Adv Exp Med Biol; 2020; 1131():271-279. PubMed ID: 31646514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini.
    Leite MF; Burgstahler AD; Nathanson MH
    Gastroenterology; 2002 Feb; 122(2):415-27. PubMed ID: 11832456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic consequences of calcium signaling in microdomains: a first-passage-time approach.
    Rovetti R; Das KK; Garfinkel A; Shiferaw Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051920. PubMed ID: 18233700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain.
    DeRemigio H; Smith GD
    Cell Calcium; 2005 Aug; 38(2):73-86. PubMed ID: 16099503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neglected wardens: T lymphocyte ryanodine receptors.
    Fomina AF
    J Physiol; 2021 Oct; 599(19):4415-4426. PubMed ID: 34411300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells.
    Kunerth S; Langhorst MF; Schwarzmann N; Gu X; Huang L; Yang Z; Zhang L; Mills SJ; Zhang LH; Potter BV; Guse AH
    J Cell Sci; 2004 Apr; 117(Pt 10):2141-9. PubMed ID: 15054112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium microdomains and oxidative stress.
    Davidson SM; Duchen MR
    Cell Calcium; 2006; 40(5-6):561-74. PubMed ID: 17049598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1.
    Woodard GE; López JJ; Jardín I; Salido GM; Rosado JA
    J Biol Chem; 2010 Mar; 285(11):8045-53. PubMed ID: 20022948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors.
    Haak LL; Song LS; Molinski TF; Pessah IN; Cheng H; Russell JT
    J Neurosci; 2001 Jun; 21(11):3860-70. PubMed ID: 11356874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ORAI1, STIM1/2, and RYR1 shape subsecond Ca
    Diercks BP; Werner R; Weidemüller P; Czarniak F; Hernandez L; Lehmann C; Rosche A; Krüger A; Kaufmann U; Vaeth M; Failla AV; Zobiak B; Kandil FI; Schetelig D; Ruthenbeck A; Meier C; Lodygin D; Flügel A; Ren D; Wolf IMA; Feske S; Guse AH
    Sci Signal; 2018 Dec; 11(561):. PubMed ID: 30563862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental aspects of cardiac Ca(2+) signaling: interplay between RyR- and IP(3)R-gated Ca(2+) stores.
    Janowski E; Berríos M; Cleemann L; Morad M
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1939-50. PubMed ID: 20304819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of bone turnover by calcium-regulated calcium channels.
    Robinson LJ; Blair HC; Barnett JB; Zaidi M; Huang CL
    Ann N Y Acad Sci; 2010 Mar; 1192():351-7. PubMed ID: 20392259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors.
    Estrada M; Cárdenas C; Liberona JL; Carrasco MA; Mignery GA; Allen PD; Jaimovich E
    J Biol Chem; 2001 Jun; 276(25):22868-74. PubMed ID: 11301324
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.