These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33465399)

  • 21. Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors.
    Estrada M; Cárdenas C; Liberona JL; Carrasco MA; Mignery GA; Allen PD; Jaimovich E
    J Biol Chem; 2001 Jun; 276(25):22868-74. PubMed ID: 11301324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular Ca2+ regulation in rat motoneurons during development.
    Dayanithi G; Mechaly I; Viero C; Aptel H; Alphandery S; Puech S; Bancel F; Valmier J
    Cell Calcium; 2006 Mar; 39(3):237-46. PubMed ID: 16324742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation.
    Enomoto M; Nishikawa T; Siddiqui N; Chung S; Ikura M; Stathopulos PB
    Adv Exp Med Biol; 2017; 981():215-251. PubMed ID: 29594864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The physiological function of store-operated calcium entry.
    Putney JW
    Neurochem Res; 2011 Jul; 36(7):1157-65. PubMed ID: 21234676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Regulatory mechanisms of calcium signals].
    Iino M
    Nihon Ronen Igakkai Zasshi; 2000 Mar; 37(3):182-7. PubMed ID: 10879063
    [No Abstract]   [Full Text] [Related]  

  • 26. Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones.
    Solovyova N; Verkhratsky A
    Pflugers Arch; 2003 Jul; 446(4):447-54. PubMed ID: 12764616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of inositol-1,4,5-trisphosphate receptor in the regulation of calcium transients in neonatal rat ventricular myocytes.
    Zeng Z; Zhang H; Lin N; Kang M; Zheng Y; Li C; Xu P; Wu Y; Luo D
    J Pharmacol Sci; 2014; 126(1):37-46. PubMed ID: 25242084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different roles of ryanodine receptors and inositol (1,4,5)-trisphosphate receptors in adrenergically stimulated contractions of small arteries.
    Lamont C; Wier WG
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H617-25. PubMed ID: 15072954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulatory mechanisms and pathophysiological significance of IP3 receptors and ryanodine receptors in drug dependence.
    Mizuno K; Kurokawa K; Ohkuma S
    J Pharmacol Sci; 2013; 123(4):306-11. PubMed ID: 24285081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles.
    Westcott EB; Goodwin EL; Segal SS; Jackson WF
    J Physiol; 2012 Apr; 590(8):1849-69. PubMed ID: 22331418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling acidic organelles with the ER through Ca²⁺ microdomains at membrane contact sites.
    Penny CJ; Kilpatrick BS; Eden ER; Patel S
    Cell Calcium; 2015 Oct; 58(4):387-96. PubMed ID: 25866010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Model of Sub-Plasmalemmal Ca
    Gil D; Diercks BP; Guse AH; Dupont G
    Front Mol Biosci; 2022; 9():811145. PubMed ID: 35281279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle.
    Gomez MF; Stevenson AS; Bonev AD; Hill-Eubanks DC; Nelson MT
    J Biol Chem; 2002 Oct; 277(40):37756-64. PubMed ID: 12145283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains.
    Ambudkar IS; Bandyopadhyay BC; Liu X; Lockwich TP; Paria B; Ong HL
    Cell Calcium; 2006; 40(5-6):495-504. PubMed ID: 17030060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium release from ryanodine receptors in the nucleoplasmic reticulum.
    Marius P; Guerra MT; Nathanson MH; Ehrlich BE; Leite MF
    Cell Calcium; 2006 Jan; 39(1):65-73. PubMed ID: 16289270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between calcium release pathways: multiple messengers and multiple stores.
    Galione A; Churchill GC
    Cell Calcium; 2002; 32(5-6):343-54. PubMed ID: 12543094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid rafts/caveolae as microdomains of calcium signaling.
    Pani B; Singh BB
    Cell Calcium; 2009 Jun; 45(6):625-33. PubMed ID: 19324409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles.
    Westcott EB; Jackson WF
    Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1616-30. PubMed ID: 21357503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium microdomains in mitochondria and nucleus.
    Alonso MT; Villalobos C; Chamero P; Alvarez J; García-Sancho J
    Cell Calcium; 2006; 40(5-6):513-25. PubMed ID: 17067669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inositol trisphosphate receptors in smooth muscle cells.
    Narayanan D; Adebiyi A; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(11):H2190-210. PubMed ID: 22447942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.