These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. Mans R; Hassing EJ; Wijsman M; Giezekamp A; Pronk JT; Daran JM; van Maris AJA FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29145596 [TBL] [Abstract][Full Text] [Related]
28. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746 [No Abstract] [Full Text] [Related]
29. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Ito Y; Hirasawa T; Shimizu H Biosci Biotechnol Biochem; 2014; 78(1):151-9. PubMed ID: 25036498 [TBL] [Abstract][Full Text] [Related]
30. Recent advances in construction and regulation of yeast cell factories. Jiao X; Gu Y; Zhou P; Yu H; Ye L World J Microbiol Biotechnol; 2022 Feb; 38(4):57. PubMed ID: 35174424 [TBL] [Abstract][Full Text] [Related]
31. Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in Kakko N; Rantasalo A; Koponen T; Vidgren V; Kannisto M; Maiorova N; Nygren H; Mojzita D; Penttilä M; Jouhten P ACS Synth Biol; 2023 Apr; 12(4):1021-1033. PubMed ID: 36976676 [TBL] [Abstract][Full Text] [Related]
32. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Kim SK; Jo JH; Park YC; Jin YS; Seo JH Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188 [TBL] [Abstract][Full Text] [Related]
33. Deorphanizing solute carriers in Møller-Hansen I; Sáez-Sáez J; van der Hoek SA; Dyekjær JD; Christensen HB; Wright Muelas M; O'Hagan S; Kell DB; Borodina I Front Microbiol; 2024; 15():1376653. PubMed ID: 38680917 [TBL] [Abstract][Full Text] [Related]
34. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212 [TBL] [Abstract][Full Text] [Related]
35. Multiplex Genome Engineering for Optimizing Bioproduction in Saccharomyces cerevisiae. Auxillos JY; Garcia-Ruiz E; Jones S; Li T; Jiang S; Dai J; Cai Y Biochemistry; 2019 Mar; 58(11):1492-1500. PubMed ID: 30817136 [TBL] [Abstract][Full Text] [Related]
36. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Kim S; Lee K; Bae SJ; Hahn JS Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467 [TBL] [Abstract][Full Text] [Related]
37. Biosensors design in yeast and applications in metabolic engineering. Qiu C; Zhai H; Hou J FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31778177 [TBL] [Abstract][Full Text] [Related]
38. Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. Suástegui M; Shao Z J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1611-1624. PubMed ID: 27581441 [TBL] [Abstract][Full Text] [Related]
39. Transporter and its engineering for secondary metabolites. Lv H; Li J; Wu Y; Garyali S; Wang Y Appl Microbiol Biotechnol; 2016 Jul; 100(14):6119-6130. PubMed ID: 27209041 [TBL] [Abstract][Full Text] [Related]
40. The drug:H⁺ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H⁺ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts. Dias PJ; Sá-Correia I BMC Genomics; 2013 Dec; 14():901. PubMed ID: 24345006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]