These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 33465610)
21. Polypyrrole-coated gum ghatti-grafted poly(acrylamide) composite for the selective removal of hexavalent chromium from waste water. Goddeti SMR; Maity A; Ray SS Int J Biol Macromol; 2020 Dec; 164():2851-2860. PubMed ID: 32758606 [TBL] [Abstract][Full Text] [Related]
22. Polypyrrole-Bentonite composite as a highly efficient and low cost anionic adsorbent for removing hexavalent molybdenum from wastewater. Wang L; Wang M; Muhammad H; Sun Y; Guo J; Laipan M J Colloid Interface Sci; 2022 Jun; 615():797-806. PubMed ID: 35180628 [TBL] [Abstract][Full Text] [Related]
23. Carboxylate-functionalized sugarcane bagasse as an effective and renewable adsorbent to remove methylene blue. Wang SN; Li P; Gu JJ; Liang H; Wu JH Water Sci Technol; 2017 Apr; 2017(1):300-309. PubMed ID: 29698244 [TBL] [Abstract][Full Text] [Related]
24. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. Wang J; Pan K; He Q; Cao B J Hazard Mater; 2013 Jan; 244-245():121-9. PubMed ID: 23246947 [TBL] [Abstract][Full Text] [Related]
25. Insight into the synergistic effect on adsorption for Cr(vi) by a polypyrrole-based composite. Sun W; Zhang W; Li H; Su Q; Zhang P; Chen L RSC Adv; 2020 Feb; 10(15):8790-8799. PubMed ID: 35496533 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of iron oxides impregnated green adsorbent from sugarcane bagasse: Characterization and evaluation of adsorption efficiency. Buthiyappan A; Gopalan J; Abdul Raman AA J Environ Manage; 2019 Nov; 249():109323. PubMed ID: 31400589 [TBL] [Abstract][Full Text] [Related]
27. Functional rGO aerogel as a potential adsorbent for removing hazardous hexavalent chromium: adsorption performance and mechanism. Chen J; Liang Q; Ploychompoo S; Luo H Environ Sci Pollut Res Int; 2020 Apr; 27(10):10715-10728. PubMed ID: 31950413 [TBL] [Abstract][Full Text] [Related]
28. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite. Kera NH; Bhaumik M; Ballav N; Pillay K; Ray SS; Maity A J Colloid Interface Sci; 2016 Aug; 476():144-157. PubMed ID: 27209399 [TBL] [Abstract][Full Text] [Related]
29. Strong chromate-adsorbent based on pyrrolic nitrogen structure: An experimental and theoretical study on the adsorption mechanism. Ko YJ; Choi K; Lee S; Jung KW; Hong S; Mizuseki H; Choi JW; Lee WS Water Res; 2018 Nov; 145():287-296. PubMed ID: 30165314 [TBL] [Abstract][Full Text] [Related]
30. Insight into the synergistic adsorption-reduction character of chromium(VI) onto poly(pyrogallol-tetraethylene pentamine) microsphere in synthetic wastewater. Zhang Y; Liu Q; Ma W; Liu H; Zhu J; Wang L; Pei H; Liu Q; Yao J J Colloid Interface Sci; 2022 Mar; 609():825-837. PubMed ID: 34839912 [TBL] [Abstract][Full Text] [Related]
31. Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass. Jain M; Garg VK; Kadirvelu K J Hazard Mater; 2009 Nov; 171(1-3):328-34. PubMed ID: 19564074 [TBL] [Abstract][Full Text] [Related]
32. Upon designing carboxyl methylcellulose and chitosan-derived nanostructured sorbents for efficient removal of Cd(II) and Cr(VI) from water. Li SS; Wang XL; An QD; Xiao ZY; Zhai SR; Cui L; Li ZC Int J Biol Macromol; 2020 Jan; 143():640-650. PubMed ID: 31830452 [TBL] [Abstract][Full Text] [Related]
33. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Niknam Shahrak M; Ghahramaninezhad M; Eydifarash M Environ Sci Pollut Res Int; 2017 Apr; 24(10):9624-9634. PubMed ID: 28247275 [TBL] [Abstract][Full Text] [Related]
34. Synthesis, Characterization and Application of Polypyrrole Functionalized Nanocellulose for the Removal of Cr(VI) from Aqueous Solution. Alsaiari NS; Katubi KM; Alzahrani FM; Amari A; Osman H; Rebah FB; Tahoon MA Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771248 [TBL] [Abstract][Full Text] [Related]
35. Tannin-based biosorbent encapsulated into calcium alginate beads for Cr(VI) removal. Sun X; Zhang J; Ding G; You Y Water Sci Technol; 2020 Mar; 81(5):936-948. PubMed ID: 32541112 [TBL] [Abstract][Full Text] [Related]
36. Adsorption-reduction of Cr(VI) onto unmodified and phytic acid-modified carob waste: Kinetic and isotherm modeling. Bouaouina K; Barras A; Bezzi N; Amin MA; Szunerits S; Boukherroub R Chemosphere; 2022 Jun; 297():134188. PubMed ID: 35257706 [TBL] [Abstract][Full Text] [Related]
37. Potential of sugarcane bagasse in remediation of heavy metals: A review. Raj V; Chauhan MS; Pal SL Chemosphere; 2022 Nov; 307(Pt 2):135825. PubMed ID: 35948091 [TBL] [Abstract][Full Text] [Related]
38. Immobilization of polypyrrole on waste face masks using a novel in-situ-surface polymerization method: removal of Cr(VI) from electroplating wastewater. Reisi S; Farimaniraad H; Baghdadi M; Abdoli MA Environ Technol; 2024 Jun; 45(16):3162-3173. PubMed ID: 37161857 [TBL] [Abstract][Full Text] [Related]
39. Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange. Tao X; Wu Y; Cha L Environ Sci Pollut Res Int; 2019 Jul; 26(19):19828-19842. PubMed ID: 31090012 [TBL] [Abstract][Full Text] [Related]
40. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Cherdchoo W; Nithettham S; Charoenpanich J Chemosphere; 2019 Apr; 221():758-767. PubMed ID: 30684773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]