These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 33465706)
1. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition. Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Haenssle HA Eur J Cancer; 2021 Mar; 145():146-154. PubMed ID: 33465706 [TBL] [Abstract][Full Text] [Related]
2. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502 [TBL] [Abstract][Full Text] [Related]
3. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition. Winkler JK; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Haenssle HA JAMA Dermatol; 2019 Oct; 155(10):1135-1141. PubMed ID: 31411641 [TBL] [Abstract][Full Text] [Related]
4. Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions. Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Rosenberger A; Haenssle HA Eur J Cancer; 2020 Aug; 135():39-46. PubMed ID: 32534243 [TBL] [Abstract][Full Text] [Related]
5. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A; Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788 [TBL] [Abstract][Full Text] [Related]
6. Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations. Winkler JK; Sies K; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Abassi MS; Fuchs T; Rosenberger A; Haenssle HA Eur J Cancer; 2020 Mar; 127():21-29. PubMed ID: 31972395 [TBL] [Abstract][Full Text] [Related]
7. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. Fink C; Blum A; Buhl T; Mitteldorf C; Hofmann-Wellenhof R; Deinlein T; Stolz W; Trennheuser L; Cussigh C; Deltgen D; Winkler JK; Toberer F; Enk A; Rosenberger A; Haenssle HA J Eur Acad Dermatol Venereol; 2020 Jun; 34(6):1355-1361. PubMed ID: 31856342 [TBL] [Abstract][Full Text] [Related]
8. Computerizing the first step of the two-step algorithm in dermoscopy: A convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions. Winkler JK; Kommoss KS; Vollmer AS; Blum A; Stolz W; Kränke T; Hofmann-Wellenhof R; Enk A; Toberer F; Haenssle HA Eur J Cancer; 2024 Oct; 210():114297. PubMed ID: 39217816 [TBL] [Abstract][Full Text] [Related]
9. Skin lesions of face and scalp - Classification by a market-approved convolutional neural network in comparison with 64 dermatologists. Haenssle HA; Winkler JK; Fink C; Toberer F; Enk A; Stolz W; Deinlein T; Hofmann-Wellenhof R; Kittler H; Tschandl P; Rosendahl C; Lallas A; Blum A; Abassi MS; Thomas L; Tromme I; Rosenberger A; Eur J Cancer; 2021 Feb; 144():192-199. PubMed ID: 33370644 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine. Winkler JK; Blum A; Kommoss K; Enk A; Toberer F; Rosenberger A; Haenssle HA JAMA Dermatol; 2023 Jun; 159(6):621-627. PubMed ID: 37133847 [TBL] [Abstract][Full Text] [Related]
11. Does sex matter? Analysis of sex-related differences in the diagnostic performance of a market-approved convolutional neural network for skin cancer detection. Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Stolz W; Rosenberger A; Haenssle HA Eur J Cancer; 2022 Mar; 164():88-94. PubMed ID: 35182926 [TBL] [Abstract][Full Text] [Related]
12. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related]
13. Robustness of convolutional neural networks in recognition of pigmented skin lesions. Maron RC; Haggenmüller S; von Kalle C; Utikal JS; Meier F; Gellrich FF; Hauschild A; French LE; Schlaak M; Ghoreschi K; Kutzner H; Heppt MV; Haferkamp S; Sondermann W; Schadendorf D; Schilling B; Hekler A; Krieghoff-Henning E; Kather JN; Fröhling S; Lipka DB; Brinker TJ Eur J Cancer; 2021 Mar; 145():81-91. PubMed ID: 33423009 [TBL] [Abstract][Full Text] [Related]
14. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Holland-Letz T; Utikal JS; von Kalle C; Eur J Cancer; 2019 May; 113():47-54. PubMed ID: 30981091 [TBL] [Abstract][Full Text] [Related]
15. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C; Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421 [TBL] [Abstract][Full Text] [Related]
16. Pathologist-level classification of histopathological melanoma images with deep neural networks. Hekler A; Utikal JS; Enk AH; Berking C; Klode J; Schadendorf D; Jansen P; Franklin C; Holland-Letz T; Krahl D; von Kalle C; Fröhling S; Brinker TJ Eur J Cancer; 2019 Jul; 115():79-83. PubMed ID: 31129383 [TBL] [Abstract][Full Text] [Related]
17. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Hekler A; Utikal JS; Enk AH; Solass W; Schmitt M; Klode J; Schadendorf D; Sondermann W; Franklin C; Bestvater F; Flaig MJ; Krahl D; von Kalle C; Fröhling S; Brinker TJ Eur J Cancer; 2019 Sep; 118():91-96. PubMed ID: 31325876 [TBL] [Abstract][Full Text] [Related]