BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33465819)

  • 1. Monte Carlo computation of 3D distributions of stopping power ratios in light ion beam therapy using GATE-RTion.
    Bolsa-Ferruz M; Palmans H; Boersma D; Stock M; Grevillot L
    Med Phys; 2021 May; 48(5):2580-2591. PubMed ID: 33465819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: GATE-RTion: a GATE/Geant4 release for clinical applications in scanned ion beam therapy.
    Grevillot L; Boersma DJ; Fuchs H; Aitkenhead A; Elia A; Bolsa M; Winterhalter C; Vidal M; Jan S; Pietrzyk U; Maigne L; Sarrut D
    Med Phys; 2020 Aug; 47(8):3675-3681. PubMed ID: 32422684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spencer-Attix water/medium stopping-power ratios for the dosimetry of proton pencil beams.
    Gomà C; Andreo P; Sempau J
    Phys Med Biol; 2013 Apr; 58(8):2509-22. PubMed ID: 23514896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance.
    Winterhalter C; Taylor M; Boersma D; Elia A; Guatelli S; Mackay R; Kirkby K; Maigne L; Ivanchenko V; Resch AF; Sarrut D; Sitch P; Vidal M; Grevillot L; Aitkenhead A
    Med Phys; 2020 Nov; 47(11):5817-5828. PubMed ID: 32967037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV).
    Medin J; Andreo P
    Phys Med Biol; 1997 Jan; 42(1):89-105. PubMed ID: 9015811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry.
    Henkner K; Bassler N; Sobolevsky N; Jäkel O
    Med Phys; 2009 Apr; 36(4):1230-5. PubMed ID: 19472630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams.
    Kretschmer J; Dulkys A; Brodbek L; Stelljes TS; Looe HK; Poppe B
    Med Phys; 2020 Nov; 47(11):5890-5905. PubMed ID: 32989779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diamond based integrated detection system for dosimetric and microdosimetric characterization of radiotherapy ion beams.
    Verona C; Barna S; Georg D; Hamad Y; Magrin G; Marinelli M; Meouchi C; Verona Rinati G
    Med Phys; 2024 Jan; 51(1):533-544. PubMed ID: 37656015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical characterization of therapeutic proton delivery through common dental materials.
    Hu YH; Wan Chan Tseung HS; Mundy DW
    Med Phys; 2022 May; 49(5):2904-2913. PubMed ID: 35276753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams.
    Baumann KS; Horst F; Zink K; Gomà C
    Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segment-averaged LET concept and analytical calculation from microdosimetric quantities in proton radiation therapy.
    Bertolet A; Baratto-Roldán A; Cortés-Giraldo MA; Carabe-Fernandez A
    Med Phys; 2019 Sep; 46(9):4204-4214. PubMed ID: 31228264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note: Impact of beamline-specific particle energy spectra on clinical plans in carbon ion beam therapy.
    Resch AF; Schafasand M; Lackner N; Niessen T; Beck S; Elia A; Boersma D; Grevillot L; Fossati P; Glimelius L; Stock M; Georg D; Carlino A
    Med Phys; 2022 Jun; 49(6):4092-4098. PubMed ID: 35416302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed 2D range modulators preserve radiation quality on a microdosimetric scale in proton and carbon ion beams.
    Barna S; Meouchi C; Resch AF; Magrin G; Georg D; Palmans H
    Radiother Oncol; 2023 May; 182():109525. PubMed ID: 36774996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Monte-Carlo re-calculation of proton therapy plans using Geant4/Gate: implementation and comparison to plan-specific quality assurance measurements.
    Aitkenhead AH; Sitch P; Richardson JC; Winterhalter C; Patel I; Mackay RI
    Br J Radiol; 2020 Oct; 93(1114):20200228. PubMed ID: 32726141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GATE as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans.
    Grevillot L; Bertrand D; Dessy F; Freud N; Sarrut D
    Phys Med Biol; 2012 Jul; 57(13):4223-44. PubMed ID: 22684098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose- rather than fluence-averaged LET should be used as a single-parameter descriptor of proton beam quality for radiochromic film dosimetry.
    Resch AF; Heyes PD; Fuchs H; Bassler N; Georg D; Palmans H
    Med Phys; 2020 Jun; 47(5):2289-2299. PubMed ID: 32166764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy.
    Fuchs H; Moser P; Gröschl M; Georg D
    Med Phys; 2017 Mar; 44(3):1149-1156. PubMed ID: 28090633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pencil beam algorithm for magnetic resonance image-guided proton therapy.
    Padilla-Cabal F; Georg D; Fuchs H
    Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.
    Rossomme S; Palmans H; Shipley D; Thomas R; Lee N; Romano F; Cirrone P; Cuttone G; Bertrand D; Vynckier S
    Phys Med Biol; 2013 Aug; 58(16):5363-80. PubMed ID: 23877166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.