These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33465902)
1. Bilayered PLGA/PLGA-HAp Composite Scaffold for Osteochondral Tissue Engineering and Tissue Regeneration. Liang X; Duan P; Gao J; Guo R; Qu Z; Li X; He Y; Yao H; Ding J ACS Biomater Sci Eng; 2018 Oct; 4(10):3506-3521. PubMed ID: 33465902 [TBL] [Abstract][Full Text] [Related]
2. Restoration of osteochondral defects by implanting bilayered poly(lactide- Duan P; Pan Z; Cao L; Gao J; Yao H; Liu X; Guo R; Liang X; Dong J; Ding J J Orthop Translat; 2019 Oct; 19():68-80. PubMed ID: 31844615 [TBL] [Abstract][Full Text] [Related]
3. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. Duan P; Pan Z; Cao L; He Y; Wang H; Qu Z; Dong J; Ding J J Biomed Mater Res A; 2014 Jan; 102(1):180-92. PubMed ID: 23637068 [TBL] [Abstract][Full Text] [Related]
5. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
6. [Preliminary study on chitosan/HAP bilayered scaffold]. Zhang H; Wang W; Chu D; Liu Y; Guan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607 [TBL] [Abstract][Full Text] [Related]
7. Surface-Modified Poly(l-lactide- Krok-Borkowicz M; Reczyńska K; Rumian Ł; Menaszek E; Orzelski M; Malisz P; Silmanowicz P; Dobrzyński P; Pamuła E Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066080 [TBL] [Abstract][Full Text] [Related]
8. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. Lin TH; Wang HC; Cheng WH; Hsu HC; Yeh ML Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30650528 [TBL] [Abstract][Full Text] [Related]
9. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
10. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. Ren T; Ren J; Jia X; Pan K J Biomed Mater Res A; 2005 Sep; 74(4):562-9. PubMed ID: 16025492 [TBL] [Abstract][Full Text] [Related]
12. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
13. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Pan Z; Duan P; Liu X; Wang H; Cao L; He Y; Dong J; Ding J Regen Biomater; 2015 Mar; 2(1):9-19. PubMed ID: 26813511 [TBL] [Abstract][Full Text] [Related]
14. Bilayered Scaffold Prepared from a Kartogenin-Loaded Hydrogel and BMP-2-Derived Peptide-Loaded Porous Nanofibrous Scaffold for Osteochondral Defect Repair. Zheng L; Li D; Wang W; Zhang Q; Zhou X; Liu D; Zhang J; You Z; Zhang J; He C ACS Biomater Sci Eng; 2019 Sep; 5(9):4564-4573. PubMed ID: 33448830 [TBL] [Abstract][Full Text] [Related]
15. Regeneration of osteochondral defects in vivo by a cell-free cylindrical poly(lactide-co-glycolide) scaffold with a radially oriented microstructure. Dai Y; Shen T; Ma L; Wang D; Gao C J Tissue Eng Regen Med; 2018 Mar; 12(3):e1647-e1661. PubMed ID: 29047223 [TBL] [Abstract][Full Text] [Related]
16. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
17. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
18. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Zhang P; Hong Z; Yu T; Chen X; Jing X Biomaterials; 2009 Jan; 30(1):58-70. PubMed ID: 18838160 [TBL] [Abstract][Full Text] [Related]
19. Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis. Park KS; Kim BJ; Lih E; Park W; Lee SH; Joung YK; Han DK Acta Biomater; 2018 Jun; 73():204-216. PubMed ID: 29673840 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Nie H; Wang CH J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]