BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 33465904)

  • 1. Biomimetic Bacterial Cellulose-Enhanced Double-Network Hydrogel with Excellent Mechanical Properties Applied for the Osteochondral Defect Repair.
    Zhu X; Chen T; Feng B; Weng J; Duan K; Wang J; Lu X
    ACS Biomater Sci Eng; 2018 Oct; 4(10):3534-3544. PubMed ID: 33465904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bionic composite hydrogel with dual regulatory functions for the osteochondral repair.
    Luo M; Chen M; Bai J; Chen T; He S; Peng W; Wang J; Zhi W; Weng J
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112821. PubMed ID: 36108368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trilayered biomimetic hydrogel scaffolds with dual-differential microenvironment for articular osteochondral defect repair.
    Chen H; Huang J; Li X; Zhao W; Hua Y; Song Z; Wang X; Guo Z; Zhou G; Ren W; Sun Y
    Mater Today Bio; 2024 Jun; 26():101051. PubMed ID: 38633867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionic Bilayer Scaffold for Synchronous Hyperthermia Therapy of Orthotopic Osteosarcoma and Osteochondral Regeneration.
    Gong C; Wang J; Tang F; Tong D; Wang Z; Zhou Z; Ruan R; Zhang J; Song J; Yang H
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8538-8553. PubMed ID: 38343191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold.
    Eckstein KN; Hergert JE; Uzcategui AC; Schoonraad SA; Bryant SJ; McLeod RR; Ferguson VL
    Ann Biomed Eng; 2024 Apr; ():. PubMed ID: 38684606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds.
    Gao F; Xu Z; Liang Q; Li H; Peng L; Wu M; Zhao X; Cui X; Ruan C; Liu W
    Adv Sci (Weinh); 2019 Aug; 6(15):1900867. PubMed ID: 31406678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Composite Hydrogel with High Mechanical Strength, Fluorescence, and Degradable Behavior for Bone Tissue Engineering.
    Wang Y; Xue Y; Wang J; Zhu Y; Zhu Y; Zhang X; Liao J; Li X; Wu X; Qin YX; Chen W
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31266178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite cross-linked in situ polyvinyl alcohol hydrogel for bionic calcified cartilage layer.
    Qu R; Song X; Wang Y; Zhao Y; Fu X
    Colloids Surf B Biointerfaces; 2023 Oct; 230():113510. PubMed ID: 37574614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair.
    Yuan H; Zheng X; Liu W; Zhang H; Shao J; Yao J; Mao C; Hui J; Fan D
    Colloids Surf B Biointerfaces; 2020 Apr; 192():111041. PubMed ID: 32330818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology.
    Wilmoth RL; Ferguson VL; Bryant SJ
    Adv Healthc Mater; 2020 Nov; 9(22):e2001226. PubMed ID: 33073541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A natural polymer-based hydrogel with shape controllability and high toughness and its application to efficient osteochondral regeneration.
    Yang J; Wang H; Huang W; Peng K; Shi R; Tian W; Lin L; Yuan J; Yao W; Ma X; Chen Y
    Mater Horiz; 2023 Aug; 10(9):3797-3806. PubMed ID: 37416948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly deformable and strongly magnetic semi-interpenetrating hydrogels based on alginate or cellulose.
    Leon-Cecilla A; Gila-Vilchez C; Vazquez-Perez FJ; Capitan-Vallvey LF; Martos V; Fernandez-Ramos MD; Álvarez de Cienfuegos L; Medina-Castillo AL; Lopez-Lopez MT
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129368. PubMed ID: 38219926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Tissue-Penetrating Double Network Restores the Mechanical Properties of Degenerated Articular Cartilage.
    Cooper BG; Stewart RC; Burstein D; Snyder BD; Grinstaff MW
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4226-30. PubMed ID: 26934682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiply Interpenetrating Polymer Networks: Preparation, Mechanical Properties, and Applications.
    Panteli PA; Patrickios CS
    Gels; 2019 Jul; 5(3):. PubMed ID: 31288470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration.
    Zhang W; Zha K; Hu W; Xiong Y; Knoedler S; Obed D; Panayi AC; Lin Z; Cao F; Mi B; Liu G
    Biomater Res; 2023 Aug; 27(1):76. PubMed ID: 37542353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacture of Bilayered Composite Hydrogels with Strong, Elastic, and Tough Properties for Osteochondral Repair Applications.
    Yao H; Wang C; Zhang Y; Wan Y; Min Q
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives.
    Guo X; Xi L; Yu M; Fan Z; Wang W; Ju A; Liang Z; Zhou G; Ren W
    J Tissue Eng; 2023; 14():20417314231164765. PubMed ID: 37025158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bioactive glass functional hydrogel enhances bone augmentation via synergistic angiogenesis, self-swelling and osteogenesis.
    Zhao F; Yang Z; Xiong H; Yan Y; Chen X; Shao L
    Bioact Mater; 2023 Apr; 22():201-210. PubMed ID: 36246665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives.
    Niu X; Li N; Du Z; Li X
    Bioact Mater; 2023 Feb; 20():574-597. PubMed ID: 35846846
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.