These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33465936)

  • 1. Improvement in the Mechanical Properties of Cell-Laden Hydrogel Microfibers Using Interpenetrating Polymer Networks.
    Ozawa F; Okitsu T; Takeuchi S
    ACS Biomater Sci Eng; 2017 Mar; 3(3):392-398. PubMed ID: 33465936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Fabrication of Cell-Laden Microfibers for Construction of Aligned Biomimetic Tissue.
    Lu B; Li M; Fang Y; Liu Z; Zhang T; Xiong Z
    Front Bioeng Biotechnol; 2020; 8():610249. PubMed ID: 33585412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniaxial Stretching of Cell-Laden Microfibers for Promoting C2C12 Myoblasts Alignment and Myofibers Formation.
    Chen X; Du W; Cai Z; Ji S; Dwivedi M; Chen J; Zhao G; Chu J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2162-2170. PubMed ID: 31856565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold.
    Song Y; Zhang C; Wang P; Wang L; Bao C; Weir MD; Reynolds MA; Ren K; Zhao L; Xu HHK
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():895-905. PubMed ID: 28415545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Spun Alginate Hydrogel Microfibers and Their Application in Tissue Engineering.
    Sun T; Li X; Shi Q; Wang H; Huang Q; Fukuda T
    Gels; 2018 Apr; 4(2):. PubMed ID: 30674814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A clamp-free micro-stretching system for evaluating the viscoelastic response of cell-laden microfibers.
    Chen X; Sun T; Wei Z; Chen Z; Wang H; Huang Q; Fukuda T; Shi Q
    Biosens Bioelectron; 2022 Oct; 214():114517. PubMed ID: 35803154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications.
    Zheng T; Pour Shahid Saeed Abadi P; Seo J; Cha BH; Miccoli B; Li YC; Park K; Park S; Choi SJ; Bayaniahangar R; Zhang D; Lee SH; Lee CK; Khademhosseini A; Shin SR
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20615-20627. PubMed ID: 31050404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide.
    Liu S; Bastola AK; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41473-41481. PubMed ID: 29116743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product?
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Adv Healthc Mater; 2019 May; 8(9):e1900014. PubMed ID: 30866173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-responsive hydrogel microfibers with controlled anisotropic shrinkage and cross-sectional geometries.
    Nakajima S; Kawano R; Onoe H
    Soft Matter; 2017 May; 13(20):3710-3719. PubMed ID: 28436503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Crosslinked Methacrylated Alginate Hydrogel Micron Fibers and Tissue Constructs for Cell Biology.
    Gao Y; Jin X
    Mar Drugs; 2019 Sep; 17(10):. PubMed ID: 31569386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitrification of stem cell-laden core-shell microfibers with unusually low concentrations of cryoprotective agents.
    Tian C; Zhang X; Zhao G
    Biomater Sci; 2019 Feb; 7(3):889-900. PubMed ID: 30608077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering.
    You F; Wu X; Zhu N; Lei M; Eames BF; Chen X
    ACS Biomater Sci Eng; 2016 Jul; 2(7):1200-1210. PubMed ID: 33465878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.