These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33465962)

  • 1. First-principles calculation of the configurational energy density of states for a solid-state ion conductor with a variant of the Wang and Landau algorithm.
    Howard JD
    Phys Rev E; 2020 Dec; 102(6-1):063304. PubMed ID: 33465962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems.
    Maerzke KA; Gai L; Cummings PT; McCabe C
    J Chem Phys; 2012 Nov; 137(20):204105. PubMed ID: 23205979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and convergence of the Wang-Landau sampling algorithm.
    Morozov AN; Lin SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026701. PubMed ID: 17930168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural disorder in lithium lanthanum titanate: the basis of superionic conduction.
    Ohara K; Kawakita Y; Pusztai L; Temleitner L; Kohara S; Inoue N; Takeda S
    J Phys Condens Matter; 2010 Oct; 22(40):404203. PubMed ID: 21386564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density of configurational states from first-principles calculations: the phase diagram of Al-Na surface alloys.
    Borg M; Stampfl C; Mikkelsen A; Gustafson J; Lundgren E; Scheffler M; Andersen JN
    Chemphyschem; 2005 Sep; 6(9):1923-8. PubMed ID: 16086344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalization of the Wang-Landau method for off-lattice simulations.
    Shell MS; Debenedetti PG; Panagiotopoulos AZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056703. PubMed ID: 12513633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamically optimized Wang-Landau sampling with adaptive trial moves and modification factors.
    Koh YW; Lee HK; Okabe Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053302. PubMed ID: 24329374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropy of diluted antiferromagnetic Ising models on frustrated lattices using the Wang-Landau method.
    Shevchenko Y; Nefedev K; Okabe Y
    Phys Rev E; 2017 May; 95(5-1):052132. PubMed ID: 28618636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wang-Landau algorithm as stochastic optimization and its acceleration.
    Dai C; Liu JS
    Phys Rev E; 2020 Mar; 101(3-1):033301. PubMed ID: 32289991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved density of states Monte Carlo method based on recycling of rejected states.
    Chopra M; de Pablo JJ
    J Chem Phys; 2006 Mar; 124(11):114102. PubMed ID: 16555869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonconvergence of the Wang-Landau algorithms with multiple random walkers.
    Belardinelli RE; Pereyra VD
    Phys Rev E; 2016 May; 93(5):053306. PubMed ID: 27301004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of improved multibondic method and the Wang-Landau method.
    Yamaguchi C; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056710. PubMed ID: 12059753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Wang-Landau algorithm for polymers and proteins.
    Swetnam AD; Allen MP
    J Comput Chem; 2011 Apr; 32(5):816-21. PubMed ID: 20941735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Wang-Landau sampling through the use of smoothed potential-energy surfaces.
    Nguyen PH; Mittag E; Torda AE; Stock G
    J Chem Phys; 2006 Apr; 124(15):154107. PubMed ID: 16674218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.
    Inglis S; Melko RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013306. PubMed ID: 23410459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of accuracy in the Wang-Landau algorithm.
    Barash LY; Fadeeva MA; Shchur LN
    Phys Rev E; 2017 Oct; 96(4-1):043307. PubMed ID: 29347602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput methodology for synthesis, screening, and optimization of solid state lithium ion electrolytes.
    Beal MS; Hayden BE; Le Gall T; Lee CE; Lu X; Mirsaneh M; Mormiche C; Pasero D; Smith DC; Weld A; Yada C; Yokoishi S
    ACS Comb Sci; 2011 Jul; 13(4):375-81. PubMed ID: 21480668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep potential generation scheme and simulation protocol for the Li
    Huang J; Zhang L; Wang H; Zhao J; Cheng J; E W
    J Chem Phys; 2021 Mar; 154(9):094703. PubMed ID: 33685134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wang-Landau algorithm for continuous models and joint density of states.
    Zhou C; Schulthess TC; Torbrügge S; Landau DP
    Phys Rev Lett; 2006 Mar; 96(12):120201. PubMed ID: 16605885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.
    Nakayama M; Kotobuki M; Munakata H; Nogami M; Kanamura K
    Phys Chem Chem Phys; 2012 Jul; 14(28):10008-14. PubMed ID: 22711381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.