These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33465995)

  • 1. Correlated continuous-time random walk in a velocity field: Anomalous bifractional crossover.
    Liu J; Bao JD; Chen X
    Phys Rev E; 2020 Dec; 102(6-1):062122. PubMed ID: 33465995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated continuous-time random walk in the velocity field: the role of velocity and weak asymptotics.
    Liu J; Zhang C; Bao JD; Chen X
    Soft Matter; 2021 Nov; 17(42):9786-9798. PubMed ID: 34657952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong anomalous diffusive behaviors of the two-state random walk process.
    Liu J; Zhu P; Bao JD; Chen X
    Phys Rev E; 2022 Jan; 105(1-1):014122. PubMed ID: 35193269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random death process for the regularization of subdiffusive fractional equations.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquity of anomalous transport in porous media: Numerical evidence, continuous time random walk modelling, and hydrodynamic interpretation.
    Yang XR; Wang Y
    Sci Rep; 2019 Mar; 9(1):4601. PubMed ID: 30872610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Space-fractional advection-diffusion and reflective boundary condition.
    Krepysheva N; Di Pietro L; Néel MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021104. PubMed ID: 16605326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover in diffusion equation: anomalous and normal behaviors.
    Lenzi EK; Mendes RS; Tsallis C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031104. PubMed ID: 12689052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-time random-walk model for anomalous diffusion in expanding media.
    Le Vot F; Abad E; Yuste SB
    Phys Rev E; 2017 Sep; 96(3-1):032117. PubMed ID: 29347028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple diffusive behaviors of the random walk in inhomogeneous environments.
    Luo X; Bao JD; Fan WY
    Phys Rev E; 2024 Jan; 109(1-1):014130. PubMed ID: 38366502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal attenuation of PFG restricted anomalous diffusions in plate, sphere, and cylinder.
    Lin G; Zheng S; Liao X
    J Magn Reson; 2016 Nov; 272():25-36. PubMed ID: 27616657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of ergodicity and nonergodicity in the aging two-state random walks.
    Liu J; Jin Y; Bao JD; Chen X
    Soft Matter; 2022 Nov; 18(45):8687-8699. PubMed ID: 36349834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations.
    Chechkin AV; Gorenflo R; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046129. PubMed ID: 12443281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subdiffusive master equation with space-dependent anomalous exponent and structural instability.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031132. PubMed ID: 22587063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of a directional solidification front in subdiffusive media.
    Hamed MA; Nepomnyashchy AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012408. PubMed ID: 24580238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of diffusion on transverse dispersion in two-dimensional ordered and random porous media.
    Hlushkou D; Piatrusha S; Tallarek U
    Phys Rev E; 2017 Jun; 95(6-1):063108. PubMed ID: 28709263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-fractional characterization of brine reaction and precipitation in porous media.
    Xu J; Jiang G
    Phys Rev E; 2018 Apr; 97(4-1):042133. PubMed ID: 29758627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymptotic Behavior of the Solution of the Space Dependent Variable Order Fractional Diffusion Equation: Ultraslow Anomalous Aggregation.
    Fedotov S; Han D
    Phys Rev Lett; 2019 Aug; 123(5):050602. PubMed ID: 31491294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous transport and chaotic advection in homogeneous porous media.
    Lester DR; Metcalfe G; Trefry MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063012. PubMed ID: 25615192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean-squared-displacement statistical test for fractional Brownian motion.
    Sikora G; Burnecki K; Wyłomańska A
    Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-time random-walk approach to normal and anomalous reaction-diffusion processes.
    Zoia A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041115. PubMed ID: 18517586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.