These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33466058)

  • 1. Taming the diffusion approximation through a controlling-factor WKB method.
    Pande J; Shnerb NM
    Phys Rev E; 2020 Dec; 102(6-1):062410. PubMed ID: 33466058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method.
    Klett JD; Sutherland RA
    Appl Opt; 1992 Jan; 31(3):373-86. PubMed ID: 20717415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foundations of the Wentzel-Kramers-Brillouin approximation for models of cochlear mechanics in 1- and 2-D.
    Frost BL
    J Acoust Soc Am; 2024 Jan; 155(1):358-379. PubMed ID: 38236807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demographic stochasticity and extinction in populations with Allee effect.
    Méndez V; Assaf M; Masó-Puigdellosas A; Campos D; Horsthemke W
    Phys Rev E; 2019 Feb; 99(2-1):022101. PubMed ID: 30934329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extinction of oscillating populations.
    Smith NR; Meerson B
    Phys Rev E; 2016 Mar; 93(3):032109. PubMed ID: 27078294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-induced stabilization and fixation in fluctuating environment.
    Meyer I; Shnerb NM
    Sci Rep; 2018 Jun; 8(1):9726. PubMed ID: 29950588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of WKB and Fokker-Planck Methods in Analyzing Population Extinction Driven by Weak Demographic Fluctuations.
    Yu X; Li XY
    Bull Math Biol; 2019 Nov; 81(11):4840-4855. PubMed ID: 30097918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics.
    Bressloff PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051903. PubMed ID: 21230496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling rare trajectories using stochastic bridges.
    Aguilar J; Baron JW; Galla T; Toral R
    Phys Rev E; 2022 Jun; 105(6-1):064138. PubMed ID: 35854535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying invasibility.
    Pande J; Tsubery Y; Shnerb NM
    Ecol Lett; 2022 Aug; 25(8):1783-1794. PubMed ID: 35717561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant disparity and a dynamical phase transition in large deviations of the time-averaged size of stochastic populations.
    Zilber P; Smith NR; Meerson B
    Phys Rev E; 2019 May; 99(5-1):052105. PubMed ID: 31212556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extinction dynamics from metastable coexistences in an evolutionary game.
    Park HJ; Traulsen A
    Phys Rev E; 2017 Oct; 96(4-1):042412. PubMed ID: 29347472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TUNNEX: An easy-to-use wentzel-kramers-brillouin (WKB) implementation to compute tunneling half-lives.
    Quanz H; Schreiner PR
    J Comput Chem; 2019 Jan; 40(2):543-547. PubMed ID: 30341957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical expressions for characteristics of light scattering by arbitrarily shaped particles in the WKB approximation.
    Malinka AV
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jul; 32(7):1344-51. PubMed ID: 26367164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extinction rates of established spatial populations.
    Meerson B; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011129. PubMed ID: 21405683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and control of pre-extinction dynamics in stochastic populations.
    Nieddu G; Billings L; Forgoston E
    Bull Math Biol; 2014 Dec; 76(12):3122-37. PubMed ID: 25424592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconvolution of the density of states of tip and sample through constant-current tunneling spectroscopy.
    Pfeifer H; Koslowski B; Ziemann P
    Beilstein J Nanotechnol; 2011; 2():607-17. PubMed ID: 22003466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic tunneling and metastable states during the somatic evolution of cancer.
    Ashcroft P; Michor F; Galla T
    Genetics; 2015 Apr; 199(4):1213-28. PubMed ID: 25624316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extinction of metastable stochastic populations.
    Assaf M; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021116. PubMed ID: 20365539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.