These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33466078)

  • 1. Enhanced lift and thrust via the translational motion between the thorax-abdomen node and the center of mass of a butterfly with a constructive abdominal oscillation.
    Chang SK; Lai YH; Lin YJ; Yang JT
    Phys Rev E; 2020 Dec; 102(6-1):062407. PubMed ID: 33466078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the flight dynamics of take-off of a butterfly: experiments and CFD simulations for a cabbage white butterfly.
    Suzuki K; Nakamura M; Kouji M; Yoshino M
    Biol Open; 2022 Mar; 11(3):. PubMed ID: 35098995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-up butterfly model with thorax-pitch control and wing-pitch flexibility.
    Suzuki K; Iguchi D; Ishizaki K; Yoshino M
    Bioinspir Biomim; 2024 Jun; 19(4):. PubMed ID: 38866024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.
    Fei YH; Yang JT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033004. PubMed ID: 26465553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of abdomen undulation in energy consumption and stability for monarch butterfly.
    Tejaswi KC; Sridhar MK; Kang CK; Lee T
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33242851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations.
    Suzuki K; Aoki T; Yoshino M
    Phys Rev E; 2019 Jul; 100(1-1):013104. PubMed ID: 31499861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of body rotation during the flight of a butterfly.
    Fei YH; Yang JT
    Phys Rev E; 2016 Mar; 93(3):033124. PubMed ID: 27078464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butterflies fly using efficient propulsive clap mechanism owing to flexible wings.
    Johansson LC; Henningsson P
    J R Soc Interface; 2021 Jan; 18(174):20200854. PubMed ID: 33468023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A trapezoidal wing equivalent to a Janatella leucodesma's wing in terms of aerodynamic performance in the flapping flight of a butterfly model.
    Suzuki K; Yoshino M
    Bioinspir Biomim; 2019 Feb; 14(3):036003. PubMed ID: 30634176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Downstroke and upstroke conflict during banked turns in butterflies.
    Henningsson P; Johansson LC
    J R Soc Interface; 2021 Dec; 18(185):20210779. PubMed ID: 34847788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti).
    Sekhar S; Windes P; Fan X; Tafti DK
    PLoS One; 2019; 14(6):e0218672. PubMed ID: 31237912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of passive wing pitching on flight control in a hovering model insect and flapping-wing micro air vehicle.
    Hao J; Wu J; Zhang Y
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34450611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing coupling mechanism in the butterfly Pieris rapae (Lepidoptera, Pieridae) and its role in taking off.
    Ma Y; Zhao H; Ma T; Ning J; Gorb S
    J Insect Physiol; 2021; 131():104212. PubMed ID: 33662377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of flight altitude on the lift generation of monarch butterflies: from sea level to overwintering mountain.
    Sridhar MK; Kang CK; Landrum DB; Aono H; Mathis SL; Lee T
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33508811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.