These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33466078)

  • 21. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.
    Slegers N; Heilman M; Cranford J; Lang A; Yoder J; Habegger ML
    Bioinspir Biomim; 2017 Jan; 12(1):016013. PubMed ID: 28000615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational investigation of cicada aerodynamics in forward flight.
    Wan H; Dong H; Gai K
    J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of flight altitude on the lift generation of monarch butterflies: from sea level to overwintering mountain.
    Sridhar MK; Kang CK; Landrum DB; Aono H; Mathis SL; Lee T
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33508811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An aerodynamic model for insect flapping wings in forward flight.
    Han JS; Chang JW; Han JH
    Bioinspir Biomim; 2017 Mar; 12(3):036004. PubMed ID: 28362636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerodynamic effects of deviating motion of flapping wings in hovering flight.
    Kim HY; Han JS; Han JH
    Bioinspir Biomim; 2019 Feb; 14(2):026006. PubMed ID: 30616233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experiments and numerical simulations on hovering three-dimensional flexible flapping wings.
    Diaz-Arriba D; Jardin T; Gourdain N; Pons F; David L
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flapping tail membrane in bats produces potentially important thrust during horizontal takeoffs and very slow flight.
    Adams RA; Snode ER; Shaw JB
    PLoS One; 2012; 7(2):e32074. PubMed ID: 22393378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hawkmoths regulate flight torques with their abdomen for yaw control.
    Le V; Cellini B; Schilder R; Mongeau JM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel cylindrical overlap-and-fling mechanism used by sea butterflies.
    Karakas F; Maas AE; Murphy DW
    J Exp Biol; 2020 Aug; 223(Pt 15):. PubMed ID: 32587067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insect-like flapping wing mechanism based on a double spherical Scotch yoke.
    Galiński C; Zbikowski R
    J R Soc Interface; 2005 Jun; 2(3):223-35. PubMed ID: 16849181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces.
    Bimbard G; Kolomenskiy D; Bouteleux O; Casas J; Godoy-Diana R
    J Exp Biol; 2013 Sep; 216(Pt 18):3551-63. PubMed ID: 23788714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A numerical study on the aerodynamic effects of dynamic twisting on forward flight flapping wings.
    Dong Y; Song B; Yang W; Xue D
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles.
    Jadhav SS; Lua KB; Tay WB
    Bioinspir Biomim; 2019 Feb; 14(3):036006. PubMed ID: 30721890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 39. To tread or not to tread: comparison between water treading and conventional flapping wing kinematics.
    Krishna S; Gehrke A; Mulleners K
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36228610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.