These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33466078)

  • 41. Direct Measurements of the Wing Kinematics of a Bat in Straight Flight.
    Singh SK; Zhang LB; Zhao JS
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33210129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The novel aerodynamics of insect flight: applications to micro-air vehicles.
    Ellington CP
    J Exp Biol; 1999 Dec; 202(Pt 23):3439-48. PubMed ID: 10562527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An analytical model and scaling of chordwise flexible flapping wings in forward flight.
    Kodali D; Kang CK
    Bioinspir Biomim; 2016 Dec; 12(1):016006. PubMed ID: 27958194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of structural flexibility of wings in flapping flight of butterfly.
    Senda K; Obara T; Kitamura M; Yokoyama N; Hirai N; Iima M
    Bioinspir Biomim; 2012 Jun; 7(2):025002. PubMed ID: 22617048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria.
    Berwaerts K; Van Dyck H
    Oecologia; 2004 Nov; 141(3):536-45. PubMed ID: 15309609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing.
    Takahashi H; Tanaka H; Matsumoto K; Shimoyama I
    Bioinspir Biomim; 2012 Sep; 7(3):036020. PubMed ID: 22711175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Lift Effects of Chordwise Wing Deformation and Body Angle on Low-Speed Flying Butterflies.
    Fang YH; Tang CH; Lin YJ; Yeh SI; Yang JT
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental analysis of the sweepback angle effect on the thrust generation of a robotic penguin wing.
    Shen Y; Tanaka H
    Bioinspir Biomim; 2023 Feb; 18(2):. PubMed ID: 36669204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mechanisms of lift enhancement in insect flight.
    Lehmann FO
    Naturwissenschaften; 2004 Mar; 91(3):101-22. PubMed ID: 15034660
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scaling of the performance of insect-inspired passive-pitching flapping wings.
    Sum Wu K; Nowak J; Breuer KS
    J R Soc Interface; 2019 Dec; 16(161):20190609. PubMed ID: 31847758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unsteady aerodynamics of insect flight.
    Ellington CP
    Symp Soc Exp Biol; 1995; 49():109-29. PubMed ID: 8571220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Leading-edge curvature effect on aerodynamic performance of flapping wings in hover and forward flight.
    Addo-Akoto R; Han JS; Han JH
    Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38955342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism.
    Nguyen TA; Vu Phan H; Au TK; Park HC
    Bioinspir Biomim; 2016 Jun; 11(4):046001. PubMed ID: 27321705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.
    Armanini SF; Caetano JV; Croon GC; Visser CC; Mulder M
    Bioinspir Biomim; 2016 Jun; 11(4):046002. PubMed ID: 27359331
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aerodynamic performance of flapping wing with alula under different kinematics of complex flapping motion.
    Bao H; Song B; Ma D; Xue D
    Bioinspir Biomim; 2023 Dec; 19(1):. PubMed ID: 38011727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of the wave: aerodynamic and aposematic functions of butterfly wing motion.
    Srygley RB
    Proc Biol Sci; 2007 Apr; 274(1612):913-7. PubMed ID: 17264060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Divergence of climbing escape flight performance in Morpho butterflies living in different microhabitats.
    Le Roy C; Silva N; Godoy-Diana R; Debat V; Llaurens V; Muijres FT
    J Exp Biol; 2022 Aug; 225(15):. PubMed ID: 35851402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.