These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33466307)
1. Delta Radiomics Analysis for Local Control Prediction in Pancreatic Cancer Patients Treated Using Magnetic Resonance Guided Radiotherapy. Cusumano D; Boldrini L; Yadav P; Casà C; Lee SL; Romano A; Piras A; Chiloiro G; Placidi L; Catucci F; Votta C; Mattiucci GC; Indovina L; Gambacorta MA; Bassetti M; Valentini V Diagnostics (Basel); 2021 Jan; 11(1):. PubMed ID: 33466307 [TBL] [Abstract][Full Text] [Related]
2. A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients. Chiloiro G; Boldrini L; Preziosi F; Cusumano D; Yadav P; Romano A; Placidi L; Lenkowicz J; Dinapoli N; Bassetti MF; Gambacorta MA; Valentini V Front Oncol; 2022; 12():831712. PubMed ID: 35280799 [TBL] [Abstract][Full Text] [Related]
3. Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation. Cusumano D; Boldrini L; Yadav P; Yu G; Musurunu B; Chiloiro G; Piras A; Lenkowicz J; Placidi L; Romano A; De Luca V; Votta C; Barbaro B; Gambacorta MA; Bassetti MF; Yang Y; Indovina L; Valentini V Phys Med; 2021 Apr; 84():186-191. PubMed ID: 33901863 [TBL] [Abstract][Full Text] [Related]
4. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Boldrini L; Cusumano D; Chiloiro G; Casà C; Masciocchi C; Lenkowicz J; Cellini F; Dinapoli N; Azario L; Teodoli S; Gambacorta MA; De Spirito M; Valentini V Radiol Med; 2019 Feb; 124(2):145-153. PubMed ID: 30374650 [TBL] [Abstract][Full Text] [Related]
5. Radiomics-enhanced early regression index for predicting treatment response in rectal cancer: a multi-institutional 0.35 T MRI-guided radiotherapy study. Boldrini L; Chiloiro G; Cusumano D; Yadav P; Yu G; Romano A; Piras A; Votta C; Placidi L; Broggi S; Catucci F; Lenkowicz J; Indovina L; Bassetti MF; Yang Y; Fiorino C; Valentini V; Gambacorta MA Radiol Med; 2024 Apr; 129(4):615-622. PubMed ID: 38512616 [TBL] [Abstract][Full Text] [Related]
6. Predictive Value of Delta-Radiomics Texture Features in 0.35 Tesla Magnetic Resonance Setup Images Acquired During Stereotactic Ablative Radiotherapy of Pancreatic Cancer. Simpson G; Jin W; Spieler B; Portelance L; Mellon E; Kwon D; Ford JC; Dogan N Front Oncol; 2022; 12():807725. PubMed ID: 35515129 [TBL] [Abstract][Full Text] [Related]
7. External Validation of Early Regression Index (ERI Cusumano D; Boldrini L; Yadav P; Yu G; Musurunu B; Chiloiro G; Piras A; Lenkowicz J; Placidi L; Broggi S; Romano A; Mori M; Barbaro B; Azario L; Gambacorta MA; De Spirito M; Bassetti MF; Yang Y; Fiorino C; Valentini V Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1347-1356. PubMed ID: 32758641 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of delta radiomics-based pCR prediction for rectal cancer patients treated with magnetic resonance-guided adaptive radiotherapy. Wu J; Xiao J; Li Y; Wu F; Peng Q; Li C; Tang B; Orlandini LC Front Oncol; 2023; 13():1230519. PubMed ID: 38074653 [TBL] [Abstract][Full Text] [Related]
9. Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: A pilot study. Simpson G; Spieler B; Dogan N; Portelance L; Mellon EA; Kwon D; Ford JC; Yang F Med Phys; 2020 Aug; 47(8):3682-3690. PubMed ID: 32329904 [TBL] [Abstract][Full Text] [Related]
10. Delta radiomics analysis of Magnetic Resonance guided radiotherapy imaging data can enable treatment response prediction in pancreatic cancer. Tomaszewski MR; Latifi K; Boyer E; Palm RF; El Naqa I; Moros EG; Hoffe SE; Rosenberg SA; Frakes JM; Gillies RJ Radiat Oncol; 2021 Dec; 16(1):237. PubMed ID: 34911546 [TBL] [Abstract][Full Text] [Related]
11. An investigation of machine learning methods in delta-radiomics feature analysis. Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910 [TBL] [Abstract][Full Text] [Related]
12. Fractal-Based Radiomic Approach to Tailor the Chemotherapy Treatment in Rectal Cancer: A Generating Hypothesis Study. Di Dio C; Chiloiro G; Cusumano D; Catucci F; Boldrini L; Romano A; Meldolesi E; Marazzi F; Corvari B; Barbaro B; Manfredi R; Valentini V; Gambacorta MA Front Oncol; 2021; 11():774413. PubMed ID: 34956893 [TBL] [Abstract][Full Text] [Related]
13. MRI-based delta-radiomic features for prediction of local control in liver lesions treated with stereotactic body radiation therapy. Jin WH; Simpson GN; Dogan N; Spieler B; Portelance L; Yang F; Ford JC Sci Rep; 2022 Nov; 12(1):18631. PubMed ID: 36329116 [TBL] [Abstract][Full Text] [Related]
14. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770 [TBL] [Abstract][Full Text] [Related]
15. MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively. Li Z; Li H; Wang S; Dong D; Yin F; Chen A; Wang S; Zhao G; Fang M; Tian J; Wu S; Wang H J Magn Reson Imaging; 2019 May; 49(5):1420-1426. PubMed ID: 30362652 [TBL] [Abstract][Full Text] [Related]
16. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Gao Y; Kalbasi A; Hsu W; Ruan D; Fu J; Shao J; Cao M; Wang C; Eilber FC; Bernthal N; Bukata S; Dry SM; Nelson SD; Kamrava M; Lewis J; Low DA; Steinberg M; Hu P; Yang Y Phys Med Biol; 2020 Aug; 65(17):175006. PubMed ID: 32554891 [TBL] [Abstract][Full Text] [Related]
17. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Wang G; He L; Yuan C; Huang Y; Liu Z; Liang C Eur J Radiol; 2018 Jan; 98():100-106. PubMed ID: 29279146 [TBL] [Abstract][Full Text] [Related]
18. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
19. Pretreatment Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based Radiomics for Advanced Nasopharyngeal Carcinoma Patients. Yu TT; Lam SK; To LH; Tse KY; Cheng NY; Fan YN; Lo CL; Or KW; Chan ML; Hui KC; Chan FC; Hui WM; Ngai LK; Lee FK; Au KH; Yip CW; Zhang Y; Cai J Front Oncol; 2019; 9():1050. PubMed ID: 31681588 [No Abstract] [Full Text] [Related]
20. Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. Shi L; Rong Y; Daly M; Dyer B; Benedict S; Qiu J; Yamamoto T Phys Med Biol; 2020 Jan; 65(1):015009. PubMed ID: 31307024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]