These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3346650)

  • 1. Monoamine neurotransmitters in the evolution of infarction in ischemic striatum: morphologic correlation.
    Weinberger J; Nieves-Rosa J
    J Neural Transm; 1988; 71(2):133-42. PubMed ID: 3346650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of monoamine neurotransmitters in the evolution of infarction in ischemic striatum.
    Weinberger J; Nieves-Rosa J
    J Neural Transm; 1987; 69(3-4):265-75. PubMed ID: 2442301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine.
    Weinberger J; Nieves-Rosa J; Cohen G
    Stroke; 1985; 16(5):864-70. PubMed ID: 2864754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve terminal damage in cerebral ischemia: greater susceptibility of catecholamine nerve terminals relative to serotonin nerve terminals.
    Weinberger J; Cohen G; Nieves-Rosa J
    Stroke; 1983; 14(6):986-9. PubMed ID: 6659005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of redox factor-1, p53-activated gene 608 and caspase-3 messenger RNAs following repeated unilateral common carotid artery occlusion in gerbils--relationship to delayed cell injury and secondary failure of energy state.
    Hermann DM; Kuroiwa T; Hata R; Gillardon F; Ito U; Mies G
    Neuroscience; 2001; 102(4):779-87. PubMed ID: 11182242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain H-3-catecholamine metabolism in experimental cerebral ischemia.
    Lavyne MH; Moskowitz MA; Larin F; Zervas NT; Wurtman RJ
    Neurology; 1975 May; 25(5):483-5. PubMed ID: 1169707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Regional change of brain energy metabolism and catecholamine in the early stage of experimental cerebral ischemia--histochemical study].
    Kim SH; Handa H; Ishikawa M; Hirai O; Yoshida S
    No To Shinkei; 1984 Feb; 36(2):167-74. PubMed ID: 6732986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow in the evolution of infarction following unilateral carotid artery occlusion in Mongolian gerbils.
    Weinberger J; Nieves-Rosa J
    Stroke; 1987; 18(3):612-5. PubMed ID: 3590254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemia-induced seizures and cortical monoamine levels.
    Welch KM; Wang TP; Chabi E
    Ann Neurol; 1978 Feb; 3(2):152-5. PubMed ID: 655665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental ischemic stroke: a review.
    Garcia JH
    Stroke; 1984; 15(1):5-14. PubMed ID: 6364464
    [No Abstract]   [Full Text] [Related]  

  • 11. Regional differences in the rate of energy impairment after threshold level ischemia for induction of cerebral infarction in gerbils.
    Kuroiwa T; Mies G; Hermann D; Hakamata Y; Hanyu S; Ito U
    Acta Neuropathol; 2000 Dec; 100(6):587-94. PubMed ID: 11078209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of aminophylline on cerebral infarction in the Mongolian gerbil.
    McGraw CP; Crowell GF; Howard G
    Stroke; 1978; 9(5):477-9. PubMed ID: 705829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperbaric oxygen and cerebral infarction in the gerbil.
    Burt JT; Kapp JP; Smith RR
    Surg Neurol; 1987 Oct; 28(4):265-8. PubMed ID: 3629458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain vasculature and induced ischemia in seizure-prone and non-seizure-prone gerbils.
    Donadio MF; Kozlowski PB; Kaplan H; Wisniewski HM; Majkowski J
    Brain Res; 1982 Feb; 234(2):263-73. PubMed ID: 7059830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degeneration of astrocytic processes and their mitochondria in cerebral cortical regions peripheral to the cortical infarction: heterogeneity of their disintegration is closely associated with disseminated selective neuronal necrosis and maturation of injury.
    Ito U; Hakamata Y; Kawakami E; Oyanagi K
    Stroke; 2009 Jun; 40(6):2173-81. PubMed ID: 19359621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurological dysfunctions versus regional infarction volume after focal ischemia in Mongolian gerbils.
    Ishibashi S; Kuroiwa T; Endo S; Okeda R; Mizusawa H
    Stroke; 2003 Jun; 34(6):1501-6. PubMed ID: 12750539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of insulin on acute experimental cerebral ischemia in gerbils.
    Fukuoka S; Yeh H; Mandybur TI; Tew JM
    Stroke; 1989 Mar; 20(3):396-9. PubMed ID: 2646763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental stroke in gerbils: correlation of clinical, pathological and electroencephalographic findings and protein synthesis.
    Yanagihara T
    Stroke; 1978; 9(2):155-9. PubMed ID: 644609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence of acute, massive striatal dopamine release in gerbils with unilateral strokes.
    Brannan T; Weinberger J; Knott P; Taff I; Kaufmann H; Togasaki D; Nieves-Rosa J; Maker H
    Stroke; 1987; 18(1):108-10. PubMed ID: 3810742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical expression of phospholipase C in global and focal ischemic encephalopathy in gerbil: relationship with morphological changes.
    Koo H
    J Korean Med Sci; 1996 Feb; 11(1):44-54. PubMed ID: 8703370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.