These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33466751)

  • 41. Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors.
    Jayasinghe RC; Perera AG; Zhu H; Zhao Y
    Opt Lett; 2012 Oct; 37(20):4302-4. PubMed ID: 23073444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile fabrication of 2-dimensional arrays of sub-10 nm single crystalline Si nanopillars using nanoparticle masks.
    Hong YK; Bahng JH; Lee G; Kim H; Kim W; Lee S; Koo JY; Park JI; Lee WR; Cheon J
    Chem Commun (Camb); 2003 Dec; (24):3034-5. PubMed ID: 14703844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.
    Kim HM; Litao Y; Kim B
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8521-6. PubMed ID: 26726545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-step texture process for high-efficiency crystalline silicon solar cell applications.
    Kim H; Lee Y; Shin C; Han S; Kim S; Lee Y; Yi J
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7916-9. PubMed ID: 24266164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silicon nanopillars for field-enhanced surface spectroscopy.
    Wells SM; Merkulov IA; Kravchenko II; Lavrik NV; Sepaniak MJ
    ACS Nano; 2012 Apr; 6(4):2948-59. PubMed ID: 22385359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stable and Efficient Nanofilm Pure Evaporation on Nanopillar Surfaces.
    Pu JH; Wang SK; Sun J; Wang W; Wang HS
    Langmuir; 2021 Mar; 37(12):3731-3739. PubMed ID: 33730854
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TiN nanopillar-enhanced laser desorption and ionization of various analytes.
    Yamada Y; Yatsugi K; Murase M; Mizoshita N
    Analyst; 2021 Jun; 146(11):3454-3462. PubMed ID: 34075923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural coloration with hourglass-shaped vertical silicon nanopillar arrays.
    Gawlik BM; Cossio G; Kwon H; Jurado Z; Palacios B; Singhal S; Alù A; Yu ET; Sreenivasan SV
    Opt Express; 2018 Nov; 26(23):30952-30968. PubMed ID: 30469985
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices.
    Sanatinia R; Berrier A; Dhaka V; Perros AP; Huhtio T; Lipsanen H; Anand S
    Nanotechnology; 2015 Oct; 26(41):415304. PubMed ID: 26403979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and Photoluminescence Study of Large-Area Ordered and Size-Controlled GeSi Multi-quantum-well Nanopillar Arrays.
    Jiang Y; Huang S; Zhu Z; Zeng C; Fan Y; Jiang Z
    Nanoscale Res Lett; 2016 Dec; 11(1):102. PubMed ID: 26909782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and Migration Mechanisms.
    Beckwith KS; Ullmann S; Vinje J; Sikorski P
    Small; 2019 Oct; 15(43):e1902514. PubMed ID: 31464377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of Periodically Arrayed Silicon Microwires Using Simple Patterning Process.
    Kim C; Lim S; Jeong C
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8527-32. PubMed ID: 26726546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays.
    Murthy BR; Ng JK; Selamat ES; Balasubramanian N; Liu WT
    Biosens Bioelectron; 2008 Dec; 24(4):723-8. PubMed ID: 18684613
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Al/Si Nanopillars as Very Sensitive SERS Substrates.
    Magno G; Bélier B; Barbillon G
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30149662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Reflectance Characteristics of an Inverse Moth-Eye Structure in a Silicon Substrate Depending on SF
    Woo JC; Um DS
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preventing the Capillary-Induced Collapse of Vertical Nanostructures.
    Ghosh T; Fritz EC; Balakrishnan D; Zhang Z; Vrancken N; Anand U; Zhang H; Loh ND; Xu X; Holsteyns F; Nijhuis CA; Mirsaidov U
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5537-5544. PubMed ID: 35040618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of artificial polymeric nanopillars for clean and reusable adhesives.
    Kim S; Kustandi TS; Yi DK
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4779-82. PubMed ID: 19049107
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Model-Driven Controlled Alteration of Nanopillar Cap Architecture Reveals its Effects on Bactericidal Activity.
    Zahir T; Pesek J; Franke S; Pee JV; Rathore A; Smeets B; Ramon H; Xu X; Fauvart M; Michiels J
    Microorganisms; 2020 Jan; 8(2):. PubMed ID: 32013036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface second-harmonic generation from vertical GaP nanopillars.
    Sanatinia R; Swillo M; Anand S
    Nano Lett; 2012 Feb; 12(2):820-6. PubMed ID: 22214365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication and characterization of hybrid Si/ZnO subwavelength structures as efficient antireflection layer.
    Baek SH; Park JS; Jung YI; Park IK; Kim JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6359-61. PubMed ID: 24205661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.