These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33466899)

  • 1. Changes in Prefrontal Cortex-Thalamic Circuitry after Acoustic Trauma.
    Barry KM; Robertson D; Mulders WHAM
    Biomedicines; 2021 Jan; 9(1):. PubMed ID: 33466899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medial geniculate neurons show diverse effects in response to electrical stimulation of prefrontal cortex.
    Barry KM; Robertson D; Mulders WHAM
    Hear Res; 2017 Sep; 353():204-212. PubMed ID: 28709732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hearing Loss Increases Inhibitory Effects of Prefrontal Cortex Stimulation on Sound Evoked Activity in Medial Geniculate Nucleus.
    De Vis C; Barry KM; Mulders WHAM
    Front Synaptic Neurosci; 2022; 14():840368. PubMed ID: 35300310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic trauma increases inhibitory effects of amygdala electrical stimulation on thalamic neurons in a rat model.
    Zimdahl JW; Rodger J; Mulders WHAM
    Hear Res; 2023 Nov; 439():108891. PubMed ID: 37797476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in auditory thalamus neural firing patterns after acoustic trauma in rats.
    Barry KM; Robertson D; Mulders WHAM
    Hear Res; 2019 Aug; 379():89-97. PubMed ID: 31108284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of medial geniculate nucleus neuronal activity by electrical stimulation of the nucleus accumbens.
    Barry KM; Paolini AG; Robertson D; Mulders WH
    Neuroscience; 2015 Nov; 308():1-10. PubMed ID: 26349008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous firing patterns in the medial geniculate nucleus in a guinea pig model of tinnitus.
    Cook JA; Barry KM; Zimdahl JW; Leggett K; Mulders WHAM
    Hear Res; 2021 Apr; 403():108190. PubMed ID: 33556774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus.
    Zimdahl JW; Thomas H; Bolland SJ; Leggett K; Barry KM; Rodger J; Mulders WHAM
    Front Neurosci; 2021; 15():693935. PubMed ID: 34366777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-intensity repetitive transcranial magnetic stimulation over prefrontal cortex in an animal model alters activity in the auditory thalamus but does not affect behavioural measures of tinnitus.
    Mulders WHAM; Leggett K; Mendis V; Tarawneh H; Wong JK; Rodger J
    Exp Brain Res; 2019 Apr; 237(4):883-896. PubMed ID: 30649586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposite effects of tetanic stimulation of the auditory thalamus or auditory cortex on the acoustic startle reflex in awake rats.
    Huang J; Wu X; Yeomans J; Li L
    Eur J Neurosci; 2005 Apr; 21(7):1943-56. PubMed ID: 15869487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of infraslow potentials in the primary auditory cortex: component analysis and contribution of specific thalamic-cortical and non-specific brainstem-cortical influences.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2008 Jul; 1219():66-77. PubMed ID: 18534565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus.
    Angelucci A; Clascá F; Sur M
    J Comp Neurol; 1998 Oct; 400(3):417-39. PubMed ID: 9779945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound-induced changes of infraslow brain potential fluctuations in the medial geniculate nucleus and primary auditory cortex in anaesthetized rats.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2007 Feb; 1133(1):78-86. PubMed ID: 17196561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar complex and the topography of the MGN-AI projection.
    Pallas SL; Roe AW; Sur M
    J Comp Neurol; 1990 Aug; 298(1):50-68. PubMed ID: 1698829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fear Learning Enhances Prefrontal Cortical Suppression of Auditory Thalamic Inputs to the Amygdala in Adults, but Not Adolescents.
    Ferrara NC; Mrackova E; Loh MK; Padival M; Rosenkranz JA
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32344598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat.
    Rasmusson DD; Smith SA; Semba K
    Neuroscience; 2007 Oct; 149(1):232-41. PubMed ID: 17850979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomy of the auditory cortex.
    Pandya DN
    Rev Neurol (Paris); 1995; 151(8-9):486-94. PubMed ID: 8578069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats.
    Maren S; Yap SA; Goosens KA
    J Neurosci; 2001 Mar; 21(6):RC135. PubMed ID: 11245704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
    Chambers AR; Salazar JJ; Polley DB
    Front Neural Circuits; 2016; 10():72. PubMed ID: 27630546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.