These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33466899)

  • 21. Distribution and size of thalamic neurons projecting to layer I of the auditory cortical fields of the cat compared to those projecting to layer IV.
    Mitani A; Itoh K; Mizuno N
    J Comp Neurol; 1987 Mar; 257(1):105-21. PubMed ID: 3033028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.
    Scott BH; Saleem KS; Kikuchi Y; Fukushima M; Mishkin M; Saunders RC
    J Comp Neurol; 2017 Nov; 525(16):3488-3513. PubMed ID: 28685822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamate and GABA(B) transmissions in lateral amygdala are involved in startle-like electromyographic (EMG) potentiation caused by activation of auditory thalamus.
    He S; Huang J; Wu X; Li L
    Neurosci Lett; 2005 Feb; 374(2):113-8. PubMed ID: 15644275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopaminergic Modulation of Lateral Amygdala Neuronal Activity: Differential D1 and D2 Receptor Effects on Thalamic and Cortical Afferent Inputs.
    Chang CH; Grace AA
    Int J Neuropsychopharmacol; 2015 Feb; 18(8):. PubMed ID: 25716776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust interactions between the effects of auditory and cutaneous electrical stimulations on cell activities in the thalamic reticular nucleus.
    Kimura A
    Brain Res; 2017 Apr; 1661():49-66. PubMed ID: 28202254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal activity in the medial geniculate nucleus and in the auditory cortex of the rhesus monkey reflects signal anticipation.
    Hocherman S; Yirmiya R
    Brain; 1990 Dec; 113 ( Pt 6)():1707-20. PubMed ID: 2276042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex.
    Basta D; Goetze R; Ernst A
    Hear Res; 2008 Jun; 240(1-2):42-51. PubMed ID: 18372130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
    Yu XJ; Meng XK; Xu XX; He J
    Neuroscience; 2011 Oct; 193():122-31. PubMed ID: 21820493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding.
    Schreiner CE; Raggio MW
    J Neurophysiol; 1996 Mar; 75(3):1283-300. PubMed ID: 8867137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topography of projections from the primary and non-primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat.
    Kimura A; Donishi T; Okamoto K; Tamai Y
    Neuroscience; 2005; 135(4):1325-42. PubMed ID: 16165287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat.
    Doron NN; Ledoux JE
    J Comp Neurol; 1999 Sep; 412(3):383-409. PubMed ID: 10441229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.
    Sottile SY; Hackett TA; Cai R; Ling L; Llano DA; Caspary DM
    J Neurosci; 2017 Nov; 37(47):11377-11389. PubMed ID: 29061702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the paraflocculus on normal and abnormal spontaneous firing rates in the inferior colliculus.
    Vogler DP; Robertson D; Mulders WHAM
    Hear Res; 2016 Mar; 333():1-7. PubMed ID: 26724754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid auditory processing and MGN morphology in microgyric rats reared in varied acoustic environments.
    Peiffer AM; Rosen GD; Fitch RH
    Brain Res Dev Brain Res; 2002 Oct; 138(2):187-93. PubMed ID: 12354646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses.
    Au-Young SM; Shen H; Yang CR
    Synapse; 1999 Dec; 34(4):245-55. PubMed ID: 10529719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas.
    Golmayo L; Nuñez A; Zaborszky L
    Neuroscience; 2003; 119(2):597-609. PubMed ID: 12770572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent.
    Novák O; Zelenka O; Hromádka T; Syka J
    J Neurophysiol; 2016 Apr; 115(4):1860-74. PubMed ID: 26823513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig.
    He J; Yu YQ; Xiong Y; Hashikawa T; Chan YS
    J Neurophysiol; 2002 Aug; 88(2):1040-50. PubMed ID: 12163552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat.
    LeDoux JE; Ruggiero DA; Reis DJ
    J Comp Neurol; 1985 Dec; 242(2):182-213. PubMed ID: 4086664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.