These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33466925)

  • 1. Numerical Study of Multivortex Regulation in Curved Microchannels with Ultra-Low-Aspect-Ratio.
    Shen S; Gao M; Zhang F; Niu Y
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33466925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Vortex Regulation for Efficient Fluid and Particle Manipulation in Ultra-Low Aspect Ratio Curved Microchannels.
    Shen S; Wang X; Niu Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34199145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels.
    Nivedita N; Ligrani P; Papautsky I
    Sci Rep; 2017 Mar; 7():44072. PubMed ID: 28281579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Physics and Manipulation of Dean Vortices in Single- and Two-Phase Flow in Curved Microchannels: A Review.
    Saffar Y; Kashanj S; Nobes DS; Sabbagh R
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporation Induced Spontaneous Micro-Vortexes through Engineering of the Marangoni Flow.
    Cai Z; Huang Z; Li Z; Su M; Zhao Z; Qin F; Zhang Z; Yang J; Song Y
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23684-23689. PubMed ID: 32926518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes.
    Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D
    Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical conditions for development of a second pair of Dean vortices in curved microfluidic channels.
    Kim M; Borhan A
    Phys Rev E; 2023 May; 107(5-2):055103. PubMed ID: 37329080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial microfluidics: Recent advances.
    Huang D; Man J; Jiang D; Zhao J; Xiang N
    Electrophoresis; 2020 Dec; 41(24):2166-2187. PubMed ID: 33027533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
    Ansari MA; Kim KY; Kim SM
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel.
    Jiang D; Sun D; Xiang N; Chen K; Yi H; Ni Z
    Biomicrofluidics; 2013; 7(3):34113. PubMed ID: 24404033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Empirical Estimation of Dean Flow Velocity in Curved Microchannels.
    Bayat P; Rezai P
    Sci Rep; 2017 Oct; 7(1):13655. PubMed ID: 29057886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress of Inertial Microfluidics in Principle and Application.
    Gou Y; Jia Y; Wang P; Sun C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels.
    Zhang J; Yuan D; Zhao Q; Teo AJT; Yan S; Ooi CH; Li W; Nguyen NT
    Anal Chem; 2019 Mar; 91(6):4077-4084. PubMed ID: 30669838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.