These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting. Ghadiri MM; Hosseini SA; Sadatsakkak SA; Rajabpour A Biomed Microdevices; 2021 Aug; 23(3):41. PubMed ID: 34379212 [TBL] [Abstract][Full Text] [Related]
24. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics. Rasooli R; Çetin B Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366 [TBL] [Abstract][Full Text] [Related]
25. Multivortex micromixing. Sudarsan AP; Ugaz VM Proc Natl Acad Sci U S A; 2006 May; 103(19):7228-33. PubMed ID: 16645036 [TBL] [Abstract][Full Text] [Related]
26. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems. Rehmani MAA; Jaywant SA; Arif KM Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375727 [TBL] [Abstract][Full Text] [Related]
27. Optimal designs of staggered dean vortex micromixers. Chen JJ; Chen CH; Shie SR Int J Mol Sci; 2011; 12(6):3500-24. PubMed ID: 21747691 [TBL] [Abstract][Full Text] [Related]
30. Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potentials in a straight microchannel. Wang C; Song Y; Pan X Electrophoresis; 2020 Jun; 41(10-11):793-801. PubMed ID: 32012307 [TBL] [Abstract][Full Text] [Related]
31. Design and evaluation of a Dean vortex-based micromixer. Howell PB; Mott DR; Golden JP; Ligler FS Lab Chip; 2004 Dec; 4(6):663-9. PubMed ID: 15570382 [TBL] [Abstract][Full Text] [Related]
32. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Bhagat AA; Kuntaegowdanahalli SS; Papautsky I Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692 [TBL] [Abstract][Full Text] [Related]
33. A generalized formula for inertial lift on a sphere in microchannels. Liu C; Xue C; Sun J; Hu G Lab Chip; 2016 Mar; 16(5):884-92. PubMed ID: 26794086 [TBL] [Abstract][Full Text] [Related]
34. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing. Zhang Y; Zhang J; Tang F; Li W; Wang X Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226 [TBL] [Abstract][Full Text] [Related]
35. Flow study of Dean's instability in high aspect ratio microchannels. Wong YC; Dai C; Xian Q; Yan Z; Zhang Z; Wen W Sci Rep; 2023 Oct; 13(1):17896. PubMed ID: 37857780 [TBL] [Abstract][Full Text] [Related]
36. Dean vortex-enhanced blood plasma separation in self-driven spiral microchannel flow with cross-flow microfilters. Wang Y; Talukder N; Nunna BB; Lee ES Biomicrofluidics; 2024 Jan; 18(1):014104. PubMed ID: 38343650 [TBL] [Abstract][Full Text] [Related]
37. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Wang X; Liedert C; Liedert R; Papautsky I Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341 [TBL] [Abstract][Full Text] [Related]
38. Fluid Viscosity Measurement by Means of Secondary Flow in a Curved Channel. Pryazhnikov MI; Yakimov AS; Denisov IA; Pryazhnikov AI; Minakov AV; Belobrov PI Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144075 [TBL] [Abstract][Full Text] [Related]
39. Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel. Cha H; Dai Y; Hansen HHWB; Ouyang L; Chen X; Kang X; An H; Ta HT; Nguyen NT; Zhang J Cyborg Bionic Syst; 2023; 4():0036. PubMed ID: 37342212 [TBL] [Abstract][Full Text] [Related]