These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33467192)
21. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic gamma-Fe2O3 nanoparticles. Rubio-Retama J; Zafeiropoulos NE; Serafinelli C; Rojas-Reyna R; Voit B; Cabarcos EL; Stamm M Langmuir; 2007 Sep; 23(20):10280-5. PubMed ID: 17718580 [TBL] [Abstract][Full Text] [Related]
23. Development of a novel polysaccharide-based iron oxide nanoparticle to prevent iron accumulation-related osteoporosis by scavenging reactive oxygen species. Yu P; Zheng L; Wang P; Chai S; Zhang Y; Shi T; Zhang L; Peng R; Huang C; Guo B; Jiang Q Int J Biol Macromol; 2020 Dec; 165(Pt B):1634-1645. PubMed ID: 33049237 [TBL] [Abstract][Full Text] [Related]
24. Bio-redox potential of Hyphaene thebaica in bio-fabrication of ultrafine maghemite phase iron oxide nanoparticles (Fe Mohamed HEA; Afridi S; Khalil AT; Ali M; Zohra T; Salman M; Ikram A; Shinwari ZK; Maaza M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110890. PubMed ID: 32409045 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of monodispersed gamma-Fe2O3 nanoparticles using ferrocene as a novel precursor. Bhalerao GM; Sinha AK; Srivastava AK J Nanosci Nanotechnol; 2009 Sep; 9(9):5502-6. PubMed ID: 19928253 [TBL] [Abstract][Full Text] [Related]
26. Magnetic Heating Stimulated Cargo Release with Dose Control using Multifunctional MR and Thermosensitive Liposome. Ray S; Cheng CA; Chen W; Li Z; Zink JI; Lin YY Nanotheranostics; 2019; 3(2):166-178. PubMed ID: 31183312 [No Abstract] [Full Text] [Related]
27. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Bhardwaj A; Parekh K; Jain N Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662 [TBL] [Abstract][Full Text] [Related]
28. Induced heat property of polyethyleneglycol-coated iron oxide nanoparticles with dispersion stability for hyperthermia. Jang DH; Lee YI; Kim KS; Park ES; Kang SC; Yoon TJ; Choa YH J Nanosci Nanotechnol; 2013 Sep; 13(9):6098-102. PubMed ID: 24205608 [TBL] [Abstract][Full Text] [Related]
29. Improving Longitudinal Transversal Relaxation Of Gadolinium Chelate Using Silica Coating Magnetite Nanoparticles. Xu K; Liu H; Zhang J; Tong H; Zhao Z; Zhang W Int J Nanomedicine; 2019; 14():7879-7889. PubMed ID: 31576129 [TBL] [Abstract][Full Text] [Related]
30. Magnetic hyperthermia with ε-Fe Gu Y; Yoshikiyo M; Namai A; Bonvin D; Martinez A; Piñol R; Téllez P; Silva NJO; Ahrentorp F; Johansson C; Marco-Brualla J; Moreno-Loshuertos R; Fernández-Silva P; Cui Y; Ohkoshi SI; Millán A RSC Adv; 2020 Aug; 10(48):28786-28797. PubMed ID: 35520081 [TBL] [Abstract][Full Text] [Related]
31. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Kunz PC; Meyer H; Barthel J; Sollazzo S; Schmidt AM; Janiak C Chem Commun (Camb); 2013 May; 49(43):4896-8. PubMed ID: 23609342 [TBL] [Abstract][Full Text] [Related]
32. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating. Meyer H; Winkler F; Kunz P; Schmidt AM; Hamacher A; Kassack MU; Janiak C Inorg Chem; 2015 Dec; 54(23):11236-46. PubMed ID: 26595858 [TBL] [Abstract][Full Text] [Related]
33. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia. Yamamoto Y; Itoh T; Irieda T J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698 [TBL] [Abstract][Full Text] [Related]
34. Study of Phase Transformations and Hyperfine Interactions in Fe Rusakov VS; Kozlovskiy AL; Fadeev MS; Egizbek KB; Nazarova A; Kadyrzhanov KK; Shlimas DI; Zdorovets MV Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500744 [TBL] [Abstract][Full Text] [Related]
36. Maghemite (γ-Fe Lemine OM; Madkhali N; Alshammari M; Algessair S; Gismelseed A; El Mir L; Hjiri M; Yousif AA; El-Boubbou K Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640088 [TBL] [Abstract][Full Text] [Related]
37. Iron oxide shell as the oxidation-resistant layer in SmCo5 @ Fe2O3 core-shell magnetic nanoparticles. Teng X; Yang H J Nanosci Nanotechnol; 2007 Jan; 7(1):356-61. PubMed ID: 17455504 [TBL] [Abstract][Full Text] [Related]
38. Annealing effects on 5 nm iron oxide nanoparticles. Vargas JM; Lima E; Socolovsky LM; Knobel M; Zanchet D; Zysler RD J Nanosci Nanotechnol; 2007 Sep; 7(9):3313-7. PubMed ID: 18019166 [TBL] [Abstract][Full Text] [Related]
39. One-pot synthesis of water-soluble and biocompatible superparamagnetic gadolinium-doped iron oxide nanoclusters. Xiang H; Dong P; Pi L; Wang Z; Zhang T; Zhang S; Lu C; Pan Y; Yuan H; Liang H J Mater Chem B; 2020 Feb; 8(7):1432-1444. PubMed ID: 31993604 [TBL] [Abstract][Full Text] [Related]
40. Eu(3+)-doped gadolinium oxide nanoparticles synthesized by chemical coprecipitation predicted by thermodynamic modeling. Hong SP; Kang SH; Kim DK; Kang BS J Nanosci Nanotechnol; 2014 Nov; 14(11):8296-304. PubMed ID: 25958517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]