These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33467468)

  • 1. Computational Evolution of Beta-2-Microglobulin Binding Peptides for Nanopatterned Surface Sensors.
    Adedeji Olulana AF; Soler MA; Lotteri M; Vondracek H; Casalis L; Marasco D; Castronovo M; Fortuna S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially Resolved Peptide-DNA Nanoassemblages for Biomarker Detection: A Synergy of DNA-Directed Immobilization and Nanografting.
    Adedeji AF; Ambrosetti E; Casalis L; Castronovo M
    Methods Mol Biol; 2018; 1811():151-162. PubMed ID: 29926451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between desorption force measured by atomic force microscopy and adsorption free energy measured by surface plasmon resonance spectroscopy for peptide-surface interactions.
    Wei Y; Latour RA
    Langmuir; 2010 Dec; 26(24):18852-61. PubMed ID: 21073182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The T-Cell Receptor Can Bind to the Peptide-Bound Major Histocompatibility Complex and Uncomplexed β
    Merkle PS; Irving M; Hongjian S; Ferber M; Jørgensen TJD; Scholten K; Luescher I; Coukos G; Zoete V; Cuendet MA; Michielin O; Rand KD
    Biochemistry; 2017 Aug; 56(30):3945-3961. PubMed ID: 28671821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and binding geometries of the complex between β2-microglobulin and its antibody: An AFM and SPR study.
    Coppari E; Santini S; Bizzarri AR; Cannistraro S
    Biophys Chem; 2016 Apr; 211():19-27. PubMed ID: 26803406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.
    Signorelli S; Santini S; Yamada T; Bizzarri AR; Beattie CW; Cannistraro S
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):910-921. PubMed ID: 28126403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of exogenous peptide on beta2-microglobulin exchange in the HLA complex: analysis in real-time.
    Morgan CL; Ruprai AK; Solache A; Lowdell M; Price CP; Cohen SB; Parham P; Madrigal JA; Newman DJ
    Immunogenetics; 1998 Jul; 48(2):98-107. PubMed ID: 9634473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor.
    Boozer C; Ladd J; Chen S; Jiang S
    Anal Chem; 2006 Mar; 78(5):1515-9. PubMed ID: 16503602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA as invisible ink for AFM nanolithography.
    Liang J; Castronovo M; Scoles G
    J Am Chem Soc; 2012 Jan; 134(1):39-42. PubMed ID: 22148469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface.
    Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA
    Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes.
    Lee SJ; Youn BS; Park JW; Niazi JH; Kim YS; Gu MB
    Anal Chem; 2008 Apr; 80(8):2867-73. PubMed ID: 18324839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of cyclic peptides for the customized oriented immobilization of globular proteins.
    Soler MA; Rodriguez A; Russo A; Adedeji AF; Dongmo Foumthuim CJ; Cantarutti C; Ambrosetti E; Casalis L; Corazza A; Scoles G; Marasco D; Laio A; Fortuna S
    Phys Chem Chem Phys; 2017 Jan; 19(4):2740-2748. PubMed ID: 28059415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of human beta2-microglobulin on major histocompatibility complex I peptide loading and the engineering of a high affinity variant. Implications for peptide-based vaccines.
    Shields MJ; Kubota R; Hodgson W; Jacobson S; Biddison WE; Ribaudo RK
    J Biol Chem; 1998 Oct; 273(43):28010-8. PubMed ID: 9774416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and thermodynamics of beta 2-microglobulin binding to the alpha 3 domain of major histocompatibility complex class I heavy chain.
    Hebert AM; Strohmaier J; Whitman MC; Chen T; Gubina E; Hill DM; Lewis MS; Kozlowski S
    Biochemistry; 2001 May; 40(17):5233-42. PubMed ID: 11318646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the Early Assembly Mechanism for Amyloidogenic β2-Microglobulin Using Cross-linking and Native Mass Spectrometry.
    Hall Z; Schmidt C; Politis A
    J Biol Chem; 2016 Feb; 291(9):4626-37. PubMed ID: 26655720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights on peptide topology in the computational design of protein ligands: the example of lysozyme binding peptides.
    Cantarutti C; Vargas MC; Dongmo Foumthuim CJ; Dumoulin M; La Manna S; Marasco D; Santambrogio C; Grandori R; Scoles G; Soler MA; Corazza A; Fortuna S
    Phys Chem Chem Phys; 2021 Oct; 23(40):23158-23172. PubMed ID: 34617942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of the beta2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a beta-barrel species.
    Song W; Wei G; Mousseau N; Derreumaux P
    J Phys Chem B; 2008 Apr; 112(14):4410-8. PubMed ID: 18341325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of the interactions between troponin C and the C-terminal troponin I regulatory region and validation of a new peptide delivery/capture system used for surface plasmon resonance.
    Tripet B; De Crescenzo G; Grothe S; O'Connor-McCourt M; Hodges RS
    J Mol Biol; 2002 Oct; 323(2):345-62. PubMed ID: 12381325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular, self-assembling peptide linkers for stable and regenerable carbon nanotube biosensor interfaces.
    Contarino MR; Sergi M; Harrington AE; Lazareck A; Xu J; Chaiken I
    J Mol Recognit; 2006; 19(4):363-71. PubMed ID: 16775846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The atomic force microscopy as a lithographic tool: nanografting of DNA nanostructures for biosensing applications.
    Castronovo M; Scaini D
    Methods Mol Biol; 2011; 749():209-21. PubMed ID: 21674375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.