BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 33467703)

  • 1. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation.
    Kalinina E; Novichkova M
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33467703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.
    Chen CA; De Pascali F; Basye A; Hemann C; Zweier JL
    Biochemistry; 2013 Sep; 52(38):6712-23. PubMed ID: 23977830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The redox pathway of S-nitrosoglutathione, glutathione and nitric oxide in cell to neuron communications.
    Chiueh CC; Rauhala P
    Free Radic Res; 1999 Dec; 31(6):641-50. PubMed ID: 10630687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione and Glutaredoxin-Key Players in Cellular Redox Homeostasis and Signaling.
    Chai YC; Mieyal JJ
    Antioxidants (Basel); 2023 Aug; 12(8):. PubMed ID: 37627548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease.
    Musaogullari A; Chai YC
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33143095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana.
    Zaffagnini M; Morisse S; Bedhomme M; Marchand CH; Festa M; Rouhier N; Lemaire SD; Trost P
    J Biol Chem; 2013 Aug; 288(31):22777-89. PubMed ID: 23749990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide-mediated glutathionylation in neuronal function: potential regulation of energy utilization.
    Yap LP; Garcia JV; Han DS; Cadenas E
    Biochem J; 2010 Apr; 428(1):85-93. PubMed ID: 20210787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-nitrosocysteine and glutathione depletion synergize to induce cell death in human tumor cells: Insights into the redox and cytotoxic mechanisms.
    Knany A; Engelman R; Hariri HA; Biswal S; Wolfenson H; Benhar M
    Free Radic Biol Med; 2020 Nov; 160():566-574. PubMed ID: 32898624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein S-glutathionylation: from current basics to targeted modifications.
    Popov D
    Arch Physiol Biochem; 2014 Oct; 120(4):123-30. PubMed ID: 25112365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation.
    Mieyal JJ; Chock PB
    Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplasts lacking class I glutaredoxins are functional but show a delayed recovery of protein cysteinyl redox state after oxidative challenge.
    Bohle F; Rossi J; Tamanna SS; Jansohn H; Schlosser M; Reinhardt F; Brox A; Bethmann S; Kopriva S; Trentmann O; Jahns P; Deponte M; Schwarzländer M; Trost P; Zaffagnini M; Meyer AJ; Müller-Schüssele SJ
    Redox Biol; 2024 Feb; 69():103015. PubMed ID: 38183796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causes and consequences of cysteine S-glutathionylation.
    Grek CL; Zhang J; Manevich Y; Townsend DM; Tew KD
    J Biol Chem; 2013 Sep; 288(37):26497-504. PubMed ID: 23861399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase.
    Mohr S; Hallak H; de Boitte A; Lapetina EG; Brüne B
    J Biol Chem; 1999 Apr; 274(14):9427-30. PubMed ID: 10092623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to detect protein glutathionylation.
    Poerschke RL; Fritz KS; Franklin CC
    Curr Protoc Toxicol; 2013 Sep; 57():6.17.1-6.17.18. PubMed ID: 24510510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation.
    Sengupta R; Holmgren A
    Antioxid Redox Signal; 2013 Jan; 18(3):259-69. PubMed ID: 22702224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels.
    Aracena P; Tang W; Hamilton SL; Hidalgo C
    Antioxid Redox Signal; 2005; 7(7-8):870-81. PubMed ID: 15998242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.