These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 33467726)

  • 21. Osteogenic commitment of Wharton's jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application.
    Cabrera-Pérez R; Monguió-Tortajada M; Gámez-Valero A; Rojas-Márquez R; Borràs FE; Roura S; Vives J
    Stem Cell Res Ther; 2019 Nov; 10(1):356. PubMed ID: 31779673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells.
    Donders R; Bogie JFJ; Ravanidis S; Gervois P; Vanheusden M; Marée R; Schrynemackers M; Smeets HJM; Pinxteren J; Gijbels K; Walbers S; Mays RW; Deans R; Van Den Bosch L; Stinissen P; Lambrichts I; Gyselaers W; Hellings N
    Stem Cells Dev; 2018 Jan; 27(2):65-84. PubMed ID: 29267140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human umbilical cord Wharton's jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells.
    Subramanian A; Shu-Uin G; Kae-Siang N; Gauthaman K; Biswas A; Choolani M; Bongso A; Chui-Yee F
    J Cell Biochem; 2012 Jun; 113(6):1886-95. PubMed ID: 22234854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord.
    Manochantr S; U-pratya Y; Kheolamai P; Rojphisan S; Chayosumrit M; Tantrawatpan C; Supokawej A; Issaragrisil S
    Intern Med J; 2013 Apr; 43(4):430-9. PubMed ID: 23176558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of human Wharton's jelly mesenchymal stem cell paracrine signaling on keloid fibroblasts.
    Arno AI; Amini-Nik S; Blit PH; Al-Shehab M; Belo C; Herer E; Jeschke MG
    Stem Cells Transl Med; 2014 Mar; 3(3):299-307. PubMed ID: 24436441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells.
    Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS
    Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.
    Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P
    Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of biological characteristics of mesenchymal stem cells derived from maternal-origin placenta and Wharton's jelly.
    Chen G; Yue A; Ruan Z; Yin Y; Wang R; Ren Y; Zhu L
    Stem Cell Res Ther; 2015 Nov; 6():228. PubMed ID: 26607396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study.
    Swamynathan P; Venugopal P; Kannan S; Thej C; Kolkundar U; Bhagwat S; Ta M; Majumdar AS; Balasubramanian S
    Stem Cell Res Ther; 2014 Jul; 5(4):88. PubMed ID: 25069491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly.
    Amable PR; Teixeira MV; Carias RB; Granjeiro JM; Borojevic R
    Stem Cell Res Ther; 2014 Apr; 5(2):53. PubMed ID: 24739658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1(+) subpopulation.
    Devito L; Badraiq H; Galleu A; Taheem DK; Codognotto S; Siow R; Khalaf Y; Briley A; Shennan A; Poston L; McGrath J; Gentleman E; Dazzi F; Ilic D
    Regen Med; 2014; 9(6):723-32. PubMed ID: 25431909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human Wharton's jelly mesenchymal stem cells: properties, isolation and clinical applications.
    Borys-Wójcik S; Brązert M; Jankowski M; Ożegowska K; Chermuła B; Piotrowska-Kempisty H; Bukowska D; Antosik P; Pawelczyk L; Nowicki M; Jeseta M; Kempisty B
    J Biol Regul Homeost Agents; 2019 Jan-Feb,; 33(1):119-123. PubMed ID: 30729769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy.
    Jeon YJ; Kim J; Cho JH; Chung HM; Chae JI
    J Cell Biochem; 2016 May; 117(5):1112-25. PubMed ID: 26448537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.
    Saeidi M; Masoud A; Shakiba Y; Hadjati J; Mohyeddin Bonab M; Nicknam MH; Latifpour M; Nikbin B
    Iran J Allergy Asthma Immunol; 2013 Mar; 12(1):37-49. PubMed ID: 23454777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesenchymal Stromal Cells from Different Parts of Umbilical Cord: Approach to Comparison & Characteristics.
    Semenova E; Grudniak MP; Machaj EK; Bocian K; Chroscinska-Krawczyk M; Trochonowicz M; Stepaniec IM; Murzyn M; Zagorska KE; Boruczkowski D; Kolanowski TJ; Oldak T; Rozwadowska N
    Stem Cell Rev Rep; 2021 Oct; 17(5):1780-1795. PubMed ID: 33860454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche.
    Obradovic H; Krstic J; Trivanovic D; Mojsilovic S; Okic I; Kukolj T; Ilic V; Jaukovic A; Terzic M; Bugarski D
    Placenta; 2019 Jul; 82():25-34. PubMed ID: 31174623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency.
    Konala VBR; Bhonde R; Pal R
    In Vitro Cell Dev Biol Anim; 2020 Oct; 56(9):689-700. PubMed ID: 33006709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wharton's Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood-derived CD34
    Lo Iacono M; Russo E; Anzalone R; Baiamonte E; Alberti G; Gerbino A; Maggio A; La Rocca G; Acuto S
    Cell Transplant; 2018 Jan; 27(1):117-129. PubMed ID: 29562783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human Platelet Lysate Supports Efficient Expansion and Stability of Wharton's Jelly Mesenchymal Stromal Cells via Active Uptake and Release of Soluble Regenerative Factors.
    Cañas-Arboleda M; Beltrán K; Medina C; Camacho B; Salguero G
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32877987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regenerative potential of Wharton's jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy.
    Abbaszadeh H; Ghorbani F; Derakhshani M; Movassaghpour AA; Yousefi M; Talebi M; Shamsasenjan K
    J Cell Physiol; 2020 Dec; 235(12):9230-9240. PubMed ID: 32557631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.