These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 33467850)
61. Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles. Kang DJ; Kang H; Cho C; Kim KH; Jeong S; Lee JY; Kim BJ Nanoscale; 2013 Mar; 5(5):1858-63. PubMed ID: 23338854 [TBL] [Abstract][Full Text] [Related]
62. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM. Lee HJ; Lee J; Park SM J Phys Chem B; 2010 Mar; 114(8):2660-6. PubMed ID: 20141126 [TBL] [Abstract][Full Text] [Related]
63. Injectable conductive hydrogel electrodes for minimally invasive neural interfaces. Kusen I; Lee A; Cuttaz EA; Bailey ZK; Killilea J; Aslie SM; Goding JA; Green RA J Mater Chem B; 2024 Sep; 12(36):8929-8940. PubMed ID: 39145569 [TBL] [Abstract][Full Text] [Related]
64. Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices. Yun DJ; Rhee SW ACS Appl Mater Interfaces; 2012 Feb; 4(2):982-9. PubMed ID: 22264140 [TBL] [Abstract][Full Text] [Related]
65. Nanosphere templated continuous PEDOT:PSS films with low percolation threshold for application in efficient polymer solar cells. Kang DJ; Kang H; Kim KH; Kim BJ ACS Nano; 2012 Sep; 6(9):7902-9. PubMed ID: 22880844 [TBL] [Abstract][Full Text] [Related]
66. Microtexturing of the conductive PEDOT:PSS polymer for superhydrophobic organic electrochemical transistors. Gentile F; Coppedè N; Tarabella G; Villani M; Calestani D; Candeloro P; Iannotta S; Di Fabrizio E Biomed Res Int; 2014; 2014():302694. PubMed ID: 24579079 [TBL] [Abstract][Full Text] [Related]
67. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. Zhang C; Driver N; Tian Q; Jiang W; Liu H J Biomed Mater Res A; 2018 Jul; 106(7):1887-1895. PubMed ID: 29520971 [TBL] [Abstract][Full Text] [Related]
68. Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. Li Q; Chen G; Cui Y; Ji S; Liu Z; Wan C; Liu Y; Lu Y; Wang C; Zhang N; Cheng Y; Zhang KQ; Chen X ACS Nano; 2021 Jun; 15(6):9955-9966. PubMed ID: 34110782 [TBL] [Abstract][Full Text] [Related]
69. Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. Yun DJ; Hong K; Kim Sh; Yun WM; Jang JY; Kwon WS; Park CE; Rhee SW ACS Appl Mater Interfaces; 2011 Jan; 3(1):43-9. PubMed ID: 21204559 [TBL] [Abstract][Full Text] [Related]
70. Biomembrane-based organic electronic devices for ligand-receptor binding studies. Liu HY; Pappa AM; Hidalgo TC; Inal S; Owens RM; Daniel S Anal Bioanal Chem; 2020 Sep; 412(24):6265-6273. PubMed ID: 32020319 [TBL] [Abstract][Full Text] [Related]
71. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. Agarwal M; Xing Q; Shim BS; Kotov N; Varahramyan K; Lvov Y Nanotechnology; 2009 May; 20(21):215602. PubMed ID: 19423933 [TBL] [Abstract][Full Text] [Related]
72. Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films. Wu Y; Minamikawa H; Nakazumi T; Hara Y J Oleo Sci; 2020 Oct; 69(10):1331-1337. PubMed ID: 32908098 [TBL] [Abstract][Full Text] [Related]
73. All-Organic Conductive Biomaterial as an Electroactive Cell Interface. Zhuang A; Bian Y; Zhou J; Fan S; Shao H; Hu X; Zhu B; Zhang Y ACS Appl Mater Interfaces; 2018 Oct; 10(41):35547-35556. PubMed ID: 30234966 [TBL] [Abstract][Full Text] [Related]
74. Active Control of Dye Release for Neuronal Tracing Using PEDOT-PSS Coated Electrodes. Heizmann S; Kilias A; Ruther P; Egert U; Asplund M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):299-306. PubMed ID: 27831884 [TBL] [Abstract][Full Text] [Related]
75. Core-shell structured monodisperse poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) coated polystyrene microspheres and their electrorheological response. Liu YD; Kim JE; Choi HJ Macromol Rapid Commun; 2011 Jun; 32(12):881-6. PubMed ID: 21542046 [TBL] [Abstract][Full Text] [Related]
76. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method. Murase S; Yang Y Adv Mater; 2012 May; 24(18):2459-62. PubMed ID: 22488552 [TBL] [Abstract][Full Text] [Related]
78. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
79. Solution-Processed Interfacial PEDOT:PSS Assembly into Porous Tungsten Molybdenum Oxide Nanocomposite Films for Electrochromic Applications. Li H; McRae L; Elezzabi AY ACS Appl Mater Interfaces; 2018 Mar; 10(12):10520-10527. PubMed ID: 29508986 [TBL] [Abstract][Full Text] [Related]
80. Poly(3,4-ethylenedioxythiophene)-Based Nanofiber Mats as an Organic Bioelectronic Platform for Programming Multiple Capture/Release Cycles of Circulating Tumor Cells. Yu CC; Ho BC; Juang RS; Hsiao YS; Naidu RVR; Kuo CW; You YW; Shyue JJ; Fang JT; Chen P ACS Appl Mater Interfaces; 2017 Sep; 9(36):30329-30342. PubMed ID: 28825302 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]