These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33469003)
41. Electrochemically active hydroquinone-based redox mediator for flexible energy storage system with improved charge storing ability. Choi H; Kim MC; Park Y; Lee S; Ahn W; Hong J; Inn Sohn J; Jang AR; Lee YW J Colloid Interface Sci; 2021 Apr; 588():62-69. PubMed ID: 33388587 [TBL] [Abstract][Full Text] [Related]
42. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite. Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162 [TBL] [Abstract][Full Text] [Related]
43. In-situ construction of binder-free MnO Abbas Q; Mateen A; Siyal SH; Hassan NU; Alothman AA; Ouladsmane M; Eldin SM; Ansari MZ; Javed MS Chemosphere; 2023 Feb; 313():137421. PubMed ID: 36455663 [TBL] [Abstract][Full Text] [Related]
44. PEDOT:PSS-glued MoO Liang J; Sheng H; Wang Q; Yuan J; Zhang X; Su Q; Xie E; Lan W; Zhang CJ Nanoscale Adv; 2021 Jun; 3(12):3502-3512. PubMed ID: 36133713 [TBL] [Abstract][Full Text] [Related]
46. Aluminum-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. Li K; Shao Y; Liu S; Zhang Q; Wang H; Li Y; Kaner RB Small; 2017 May; 13(19):. PubMed ID: 28371336 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical Synthesis of Mesoporous Architectured Ru Films Using Supramolecular Templates. Kani K; Henzie J; Dag Ö; Wood K; Iqbal M; Lim H; Jiang B; Salomon C; Rowan AE; Hossain MSA; Na J; Yamauchi Y Small; 2020 Sep; 16(35):e2002489. PubMed ID: 32767535 [TBL] [Abstract][Full Text] [Related]
48. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window. Jin H; Qian J; Zhou L; Yuan J; Huang H; Wang Y; Tang WM; Chan HL ACS Appl Mater Interfaces; 2016 Apr; 8(14):9088-96. PubMed ID: 26953596 [TBL] [Abstract][Full Text] [Related]
49. Anisotropic Boron-Carbon Hetero-Nanosheets for Ultrahigh Energy Density Supercapacitors. Wu T; Wu X; Li L; Hao M; Wu G; Zhang T; Chen S Angew Chem Int Ed Engl; 2020 Dec; 59(52):23800-23809. PubMed ID: 32945080 [TBL] [Abstract][Full Text] [Related]
50. Copper nanoparticles anchored onto boron-doped graphene nanosheets for use as a high performance asymmetric solid-state supercapacitor. Pandian PM; Pandurangan A RSC Adv; 2019 Jan; 9(6):3443-3461. PubMed ID: 35548687 [TBL] [Abstract][Full Text] [Related]
51. Ionic liquid directed construction of foam-like mesoporous boron-doped graphitic carbon nitride electrode for high-performance supercapacitor. Kong L; Chen Q; Shen X; Zhu G; Zhu J J Colloid Interface Sci; 2018 Dec; 532():261-271. PubMed ID: 30092508 [TBL] [Abstract][Full Text] [Related]
53. New Chemistry for New Material: Highly Dense Mesoporous Carbon Electrode for Supercapacitors with High Areal Capacitance. Chang L; Sun K; Hu YH ACS Appl Mater Interfaces; 2018 Oct; 10(39):33162-33169. PubMed ID: 30192130 [TBL] [Abstract][Full Text] [Related]
54. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Wu C; Lu X; Peng L; Xu K; Peng X; Huang J; Yu G; Xie Y Nat Commun; 2013; 4():2431. PubMed ID: 24026224 [TBL] [Abstract][Full Text] [Related]
55. Single-step fabrication of surface morphology tuned iron oxide anchored highly porous carbon nanotube hybrid foam for a highly stable supercapacitor electrode. Park OK; Kim NH; Lee JH J Colloid Interface Sci; 2023 Jul; 641():479-491. PubMed ID: 36948103 [TBL] [Abstract][Full Text] [Related]
56. Reliable, High-Performance Electrochromic Supercapacitors Based on Metal-Doped Nickel Oxide. Kim SY; Yun TY; Yu KS; Moon HC ACS Appl Mater Interfaces; 2020 Nov; 12(46):51978-51986. PubMed ID: 33166118 [TBL] [Abstract][Full Text] [Related]
57. An Ultra-microporous Carbon Material Boosting Integrated Capacitance for Cellulose-Based Supercapacitors. Ding C; Liu T; Yan X; Huang L; Ryu S; Lan J; Yu Y; Zhong WH; Yang X Nanomicro Lett; 2020 Feb; 12(1):63. PubMed ID: 34138294 [TBL] [Abstract][Full Text] [Related]
58. Synergistic enhancement on flexible solid-state supercapacitor based on redox-active Fe Chen S; Yang M; Zhang J; Cheng H; Qin H; Yao S; Wang M; Zhang X; Yang Z Nanotechnology; 2022 Jul; 33(39):. PubMed ID: 35700715 [TBL] [Abstract][Full Text] [Related]
59. Microwave-Assisted Hierarchically Grown Flake-like NiCo Layered Double Hydroxide Nanosheets on Transitioned Polystyrene towards Triboelectricity-Driven Self-Charging Hybrid Supercapacitors. Jo S; Kitchamsetti N; Cho H; Kim D Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679336 [TBL] [Abstract][Full Text] [Related]
60. Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Gao Y; Lin Y; Chen J; Lin Q; Wu Y; Su W; Wang W; Fan Z Nanoscale; 2016 Jul; 8(27):13280-7. PubMed ID: 27337295 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]