These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 3346902)

  • 1. Mucosal association by Clostridium difficile in the hamster gastrointestinal tract.
    Borriello SP; Welch AR; Barclay FE; Davies HA
    J Med Microbiol; 1988 Mar; 25(3):191-6. PubMed ID: 3346902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clostridium difficile--a spectrum of virulence and analysis of putative virulence determinants in the hamster model of antibiotic-associated colitis.
    Borriello SP; Ketley JM; Mitchell TJ; Barclay FE; Welch AR; Price AB; Stephen J
    J Med Microbiol; 1987 Aug; 24(1):53-64. PubMed ID: 3612744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection of hamsters against Clostridium difficile ileocaecitis by prior colonisation with non-pathogenic strains.
    Borriello SP; Barclay FE
    J Med Microbiol; 1985 Jun; 19(3):339-50. PubMed ID: 4009689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of appearance of intestinal lesions in mice mono-associated with a lethal or non-lethal strain of Clostridium difficile.
    Castex F; Jouvert S; Bastide M; Corthier G
    J Med Microbiol; 1994 Feb; 40(2):102-9. PubMed ID: 8107057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection of hamsters with epidemiologically important strains of Clostridium difficile.
    Sambol SP; Tang JK; Merrigan MM; Johnson S; Gerding DN
    J Infect Dis; 2001 Jun; 183(12):1760-6. PubMed ID: 11372028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virulence of ten serogroups of Clostridium difficile in hamsters.
    Delmée M; Avesani V
    J Med Microbiol; 1990 Oct; 33(2):85-90. PubMed ID: 2231680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometric analysis of Clostridium difficile adherence to human intestinal epithelial cells.
    Drudy D; O'Donoghue DP; Baird A; Fenelon L; O'Farrelly C
    J Med Microbiol; 2001 Jun; 50(6):526-534. PubMed ID: 11393290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population dynamics of ingested Clostridium difficile in the gastrointestinal tract of the Syrian hamster.
    Wilson KH; Sheagren JN; Freter R
    J Infect Dis; 1985 Feb; 151(2):355-61. PubMed ID: 3968453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of association of Candida albicans with intestinal mucosa.
    Kennedy MJ; Volz PA; Edwards CA; Yancey RJ
    J Med Microbiol; 1987 Dec; 24(4):333-41. PubMed ID: 3320372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolytic enzyme production by Clostridium difficile and its relationship to toxin production and virulence in the hamster model.
    Seddon SV; Hemingway I; Borriello SP
    J Med Microbiol; 1990 Mar; 31(3):169-74. PubMed ID: 2156075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mucosal damage mediated by clostridial toxin in experimental clindamycin-associated colitis.
    Abrams GD; Allo M; Rifkin GD; Fekety R; Silva J
    Gut; 1980 Jun; 21(6):493-9. PubMed ID: 6776012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model.
    Freeman J; Marquis M; Crowther GS; Todhunter SL; Fawley WN; Chilton CH; Moeck G; Lehoux D; Wilcox MH
    J Antimicrob Chemother; 2012 Dec; 67(12):2919-26. PubMed ID: 22899803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution and density of Clostridium difficile toxin receptors on the intestinal mucosa of neonatal pigs.
    Keel MK; Songer JG
    Vet Pathol; 2007 Nov; 44(6):814-22. PubMed ID: 18039894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial translocation, intestinal microflora and morphological changes of intestinal mucosa in experimental models of Clostridium difficile infection.
    Naaber P; Mikelsaar RH; Salminen S; Mikelsaar M
    J Med Microbiol; 1998 Jul; 47(7):591-8. PubMed ID: 9839563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New approach to the management of Clostridium difficile infection: colonisation with non-toxigenic C. difficile during daily ampicillin or ceftriaxone administration.
    Merrigan MM; Sambol SP; Johnson S; Gerding DN
    Int J Antimicrob Agents; 2009 Mar; 33 Suppl 1():S46-50. PubMed ID: 19303570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of fatal Clostridium difficile-associated disease during continuous administration of clindamycin in hamsters.
    Merrigan MM; Sambol SP; Johnson S; Gerding DN
    J Infect Dis; 2003 Dec; 188(12):1922-7. PubMed ID: 14673773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic characteristics of toxigenic Clostridia and toxin gene evolution.
    Popoff MR; Bouvet P
    Toxicon; 2013 Dec; 75():63-89. PubMed ID: 23707611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium difficile typhlitis associated with cecal mucosal hyperplasia in Syrian hamsters.
    Ryden EB; Lipman NS; Taylor NS; Rose R; Fox JG
    Lab Anim Sci; 1991 Dec; 41(6):553-8. PubMed ID: 1667196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serogroup F strains of Clostridium difficile produce toxin B but not toxin A.
    Depitre C; Delmee M; Avesani V; L'Haridon R; Roels A; Popoff M; Corthier G
    J Med Microbiol; 1993 Jun; 38(6):434-41. PubMed ID: 8510136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastrointestinal mucosal injury following repeated daily oral administration of conventional formulations of indometacin and other non-steroidal anti-inflammatory drugs to pigs: a model for human gastrointestinal disease.
    Rainsford KD; Stetsko PI; Sirko SP; Debski S
    J Pharm Pharmacol; 2003 May; 55(5):661-8. PubMed ID: 12831509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.