BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 33469113)

  • 21. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge.
    Wang X; Krieger-Redwood K; Lyu B; Lowndes R; Wu G; Souter NE; Wang X; Kong R; Shafiei G; Bernhardt BC; Cui Z; Smallwood J; Du Y; Jefferies E
    J Neurosci; 2024 May; 44(22):. PubMed ID: 38527807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Default mode network shows distinct emotional and contextual responses yet common effects of retrieval demands across tasks.
    Souter NE; de Freitas A; Zhang M; Shao X; Del Jesus Gonzalez Alam TR; Engen H; Smallwood J; Krieger-Redwood K; Jefferies E
    Hum Brain Mapp; 2024 May; 45(7):e26703. PubMed ID: 38716714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional connectivity profiles of the default mode and visual networks reflect temporal accumulative effects of sustained naturalistic emotional experience.
    Xu S; Zhang Z; Li L; Zhou Y; Lin D; Zhang M; Zhang L; Huang G; Liu X; Becker B; Liang Z
    Neuroimage; 2023 Apr; 269():119941. PubMed ID: 36791897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks.
    Godbersen GM; Klug S; Wadsak W; Pichler V; Raitanen J; Rieckmann A; Stiernman L; Cocchi L; Breakspear M; Hacker M; Lanzenberger R; Hahn A
    Elife; 2023 May; 12():. PubMed ID: 37226880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous default network activity reflects behavioral variability independent of mind-wandering.
    Kucyi A; Esterman M; Riley CS; Valera EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13899-13904. PubMed ID: 27856733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study.
    Chen X; Chen NX; Shen YQ; Li HX; Li L; Lu B; Zhu ZC; Fan Z; Yan CG
    Neuroimage; 2020 Nov; 221():117185. PubMed ID: 32711069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lesion network mapping demonstrates that mind-wandering is associated with the default mode network.
    Philippi CL; Bruss J; Boes AD; Albazron FM; Deifelt Streese C; Ciaramelli E; Rudrauf D; Tranel D
    J Neurosci Res; 2021 Jan; 99(1):361-373. PubMed ID: 32594566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anticipatory processes in brain state switching - evidence from a novel cued-switching task implicating default mode and salience networks.
    Sidlauskaite J; Wiersema JR; Roeyers H; Krebs RM; Vassena E; Fias W; Brass M; Achten E; Sonuga-Barke E
    Neuroimage; 2014 Sep; 98():359-65. PubMed ID: 24830839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The prestimulus default mode network state predicts cognitive task performance levels on a mental rotation task.
    Kamp T; Sorger B; Benjamins C; Hausfeld L; Goebel R
    Brain Behav; 2018 Aug; 8(8):e01034. PubMed ID: 29934977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Medial prefrontal decoupling from the default mode network benefits memory.
    Müller NCJ; Dresler M; Janzen G; Beckmann CF; Fernández G; Kohn N
    Neuroimage; 2020 Apr; 210():116543. PubMed ID: 31940475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling default mode network patterns via a universal spatio-temporal brain attention skip network.
    Yuan H; Li X; Wei B
    Neuroimage; 2024 Feb; 287():120522. PubMed ID: 38253216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Default mode network mediates low-frequency fluctuations in brain activity and behavior during sustained attention.
    Zhang H; Yang SY; Qiao Y; Ge Q; Tang YY; Northoff G; Zang YF
    Hum Brain Mapp; 2022 Dec; 43(18):5478-5489. PubMed ID: 35903957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions of Cerebro-Cerebellar Default Mode Connectivity Patterns to Memory Performance in Mild Cognitive Impairment.
    Pagen LHG; van de Ven VG; Gronenschild EHBM; Priovoulos N; Verhey FRJ; Jacobs HIL
    J Alzheimers Dis; 2020; 75(2):633-647. PubMed ID: 32310164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of functional brain network reconfiguration during exposure to naturalistic stimuli using graph-theoretical analysis.
    Zhang G; Liu X
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34433142
    [No Abstract]   [Full Text] [Related]  

  • 35. The Default Mode Network Differentiates Biological From Non-Biological Motion.
    Dayan E; Sella I; Mukovskiy A; Douek Y; Giese MA; Malach R; Flash T
    Cereb Cortex; 2016 Jan; 26(1):234-245. PubMed ID: 25217472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How the human brain introspects about one's own episodes of cognitive control.
    Soto D; Theodoraki M; Paz-Alonso PM
    Cortex; 2018 Oct; 107():110-120. PubMed ID: 29198443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks.
    Grady C; Sarraf S; Saverino C; Campbell K
    Neurobiol Aging; 2016 May; 41():159-172. PubMed ID: 27103529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topologically Reorganized Connectivity Architecture of Default-Mode, Executive-Control, and Salience Networks across Working Memory Task Loads.
    Liang X; Zou Q; He Y; Yang Y
    Cereb Cortex; 2016 Apr; 26(4):1501-1511. PubMed ID: 25596593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.