These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
619 related articles for article (PubMed ID: 33469209)
1. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Antonetti DA; Silva PS; Stitt AW Nat Rev Endocrinol; 2021 Apr; 17(4):195-206. PubMed ID: 33469209 [TBL] [Abstract][Full Text] [Related]
2. The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. Altmann C; Schmidt MHH Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301251 [TBL] [Abstract][Full Text] [Related]
4. The neuroscience of diabetic retinopathy. Antonetti DA Vis Neurosci; 2021 Jan; 38():E001. PubMed ID: 33455601 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy. Rangasamy S; Monickaraj F; Legendre C; Cabrera AP; Llaci L; Bilagody C; McGuire P; Das A Exp Eye Res; 2020 Jun; 195():108043. PubMed ID: 32376470 [TBL] [Abstract][Full Text] [Related]
6. Role of ω3 polyunsaturated fatty acids in diabetic retinopathy: a morphological and metabolically cross talk among blood retina barriers damage, autoimmunity and chronic inflammation. Eynard AR; Repossi G Lipids Health Dis; 2019 May; 18(1):114. PubMed ID: 31092270 [TBL] [Abstract][Full Text] [Related]
7. The effect of total lignans from Fructus Arctii on Streptozotocin-induced diabetic retinopathy in Wistar rats. Zhang H; Gao Y; Zhang J; Wang K; Jin T; Wang H; Ruan K; Wu F; Xu Z J Ethnopharmacol; 2020 Jun; 255():112773. PubMed ID: 32199990 [TBL] [Abstract][Full Text] [Related]
9. Dipeptidyl peptidase-IV inhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats. Gonçalves A; Marques C; Leal E; Ribeiro CF; Reis F; Ambrósio AF; Fernandes R Biochim Biophys Acta; 2014 Sep; 1842(9):1454-63. PubMed ID: 24769045 [TBL] [Abstract][Full Text] [Related]
10. Neurovascular regulation in diabetic retinopathy and emerging therapies. Ji L; Tian H; Webster KA; Li W Cell Mol Life Sci; 2021 Aug; 78(16):5977-5985. PubMed ID: 34230991 [TBL] [Abstract][Full Text] [Related]
11. Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. Kim JH; Kim JH; Yu YS; Cho CS; Kim KW J Cereb Blood Flow Metab; 2009 Mar; 29(3):621-8. PubMed ID: 19107135 [TBL] [Abstract][Full Text] [Related]
12. VEGF as a Direct Functional Regulator of Photoreceptors and Contributing Factor to Diabetes-Induced Alteration of Photoreceptor Function. Hu J; Zhu M; Li D; Wu Q; Le YZ Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356612 [TBL] [Abstract][Full Text] [Related]
13. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolaemic pig model: Beneficial effects of the LpPLA Acharya NK; Qi X; Goldwaser EL; Godsey GA; Wu H; Kosciuk MC; Freeman TA; Macphee CH; Wilensky RL; Venkataraman V; Nagele RG Diab Vasc Dis Res; 2017 May; 14(3):200-213. PubMed ID: 28301218 [TBL] [Abstract][Full Text] [Related]
14. Basigin can be a therapeutic target to restore the retinal vascular barrier function in the mouse model of diabetic retinopathy. Arima M; Cui D; Kimura T; Sonoda KH; Ishibashi T; Matsuda S; Ikeda E Sci Rep; 2016 Dec; 6():38445. PubMed ID: 27917946 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric dimethylarginine aggravates blood-retinal barrier breakdown of diabetic retinopathy via inhibition of intercellular communication in retinal pericytes. Huang CY; Zhou T; Li G; Li MY; Xiong XM; Wu MT; Jiang JL Amino Acids; 2019 Nov; 51(10-12):1515-1526. PubMed ID: 31576457 [TBL] [Abstract][Full Text] [Related]
16. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Liu H; Lessieur EM; Saadane A; Lindstrom SI; Taylor PR; Kern TS Diabetologia; 2019 Dec; 62(12):2365-2374. PubMed ID: 31612267 [TBL] [Abstract][Full Text] [Related]
17. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Lechner J; Medina RJ; Lois N; Stitt AW Stem Cell Res Ther; 2022 Jul; 13(1):388. PubMed ID: 35907890 [TBL] [Abstract][Full Text] [Related]
18. Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes. Tzeng TF; Hong TY; Tzeng YC; Liou SS; Liu IM Nutrients; 2015 Sep; 7(9):7821-41. PubMed ID: 26389948 [TBL] [Abstract][Full Text] [Related]
19. Human plasminogen-derived N-acetyl-Arg-Leu-Tyr-Glu antagonizes VEGFR-2 to prevent blood-retinal barrier breakdown in diabetic mice. Park W; Kim J; Choi S; Kim T; Park M; Kim S; You JC; Kim JH; Ha KS; Lee JH; Kwon YG; Kim YM Biomed Pharmacother; 2021 Feb; 134():111110. PubMed ID: 33338749 [TBL] [Abstract][Full Text] [Related]
20. BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes. Lee VK; Hosking BM; Holeniewska J; Kubala EC; Lundh von Leithner P; Gardner PJ; Foxton RH; Shima DT Diabetologia; 2018 Nov; 61(11):2422-2432. PubMed ID: 30094465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]