These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 33469288)
1. Exosomes Promote the Transition of Androgen-Dependent Prostate Cancer Cells into Androgen-Independent Manner Through Up-Regulating the Heme Oxygenase-1. Zhang Y; Chen B; Xu N; Xu P; Lin W; Liu C; Huang P Int J Nanomedicine; 2021; 16():315-327. PubMed ID: 33469288 [TBL] [Abstract][Full Text] [Related]
2. Exosomal LINC01213 Plays a Role in the Transition of Androgen-Dependent Prostate Cancer Cells into Androgen-Independent Manners. Guo Z; Lu X; Yang F; He C; Qin L; Yang N; Han C; Wu J J Oncol; 2022; 2022():8058770. PubMed ID: 35310913 [TBL] [Abstract][Full Text] [Related]
3. Exosomal miR-222-3p contributes to castration-resistant prostate cancer by activating mTOR signaling. Wang W; Kong P; Feng K; Liu C; Gong X; Sun T; Duan X; Sang Y; Jiang Y; Li X; Zhang L; Tao Z; Liu W Cancer Sci; 2023 Nov; 114(11):4252-4269. PubMed ID: 37671589 [TBL] [Abstract][Full Text] [Related]
4. Stabilization of ADAM9 by N-α-acetyltransferase 10 protein contributes to promoting progression of androgen-independent prostate cancer. Lin YW; Wen YC; Chu CY; Tung MC; Yang YC; Hua KT; Pan KF; Hsiao M; Lee WJ; Chien MH Cell Death Dis; 2020 Jul; 11(7):591. PubMed ID: 32719332 [TBL] [Abstract][Full Text] [Related]
5. Androgen deprivation therapy induces androgen receptor-dependent upregulation of Egr1 in prostate cancers. Xu B; Tang G; Xiao C; Wang L; Yang Q; Sun Y Int J Clin Exp Pathol; 2014; 7(6):2883-93. PubMed ID: 25031707 [TBL] [Abstract][Full Text] [Related]
6. MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Guan H; You Z; Wang C; Fang F; Peng R; Mao L; Xu B; Chen M Cancer Med; 2019 Apr; 8(4):1474-1485. PubMed ID: 30784214 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of LSD1 by Pargyline inhibited process of EMT and delayed progression of prostate cancer in vivo. Wang M; Liu X; Guo J; Weng X; Jiang G; Wang Z; He L Biochem Biophys Res Commun; 2015 Nov; 467(2):310-5. PubMed ID: 26435505 [TBL] [Abstract][Full Text] [Related]
8. [Correlation between the expression of Pim-1 and androgen-deprivation therapy for prostate cancer]. Wang J; Quan CY; Chang WL; Shang ZQ; Jiang N; Li B; Niu YJ Zhonghua Nan Ke Xue; 2015 Sep; 21(9):775-81. PubMed ID: 26552208 [TBL] [Abstract][Full Text] [Related]
9. Targeting KDM4B that coactivates c-Myc-regulated metabolism to suppress tumor growth in castration-resistant prostate cancer. Wu MJ; Chen CJ; Lin TY; Liu YY; Tseng LL; Cheng ML; Chuu CP; Tsai HK; Kuo WL; Kung HJ; Wang WC Theranostics; 2021; 11(16):7779-7796. PubMed ID: 34335964 [No Abstract] [Full Text] [Related]
10. Targeting Castration-Resistant Prostate Cancer Using Mesenchymal Stem Cell Exosomes for Therapeutic MicroRNA-let-7c Delivery. Kurniawati I; Liu MC; Hsieh CL; Do AD; Sung SY Front Biosci (Landmark Ed); 2022 Sep; 27(9):256. PubMed ID: 36224011 [TBL] [Abstract][Full Text] [Related]
11. Effect of aberrantly methylated androgen receptor target gene PCDH7 on the development of androgen-independent prostate cancer cells. Xu S; Wu X; Tao Z; Li H; Fan C; Chen S; Guo J; Ning Y; Hu X Genes Genomics; 2020 Mar; 42(3):299-307. PubMed ID: 31872382 [TBL] [Abstract][Full Text] [Related]
12. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance. Li S; Hu MG; Sun Y; Yoshioka N; Ibaragi S; Sheng J; Sun G; Kishimoto K; Hu GF Mol Cancer Res; 2013 Oct; 11(10):1203-14. PubMed ID: 23851444 [TBL] [Abstract][Full Text] [Related]
13. Amplification of MUC1 in prostate cancer metastasis and CRPC development. Wong N; Major P; Kapoor A; Wei F; Yan J; Aziz T; Zheng M; Jayasekera D; Cutz JC; Chow MJ; Tang D Oncotarget; 2016 Dec; 7(50):83115-83133. PubMed ID: 27825118 [TBL] [Abstract][Full Text] [Related]
14. [Expression of PIAS3 an inhibitor of activated STAT3 protein in human prostate cancer]. Gan L; Yin ZF; Li M Zhonghua Yi Xue Za Zhi; 2008 Feb; 88(6):419-21. PubMed ID: 18581899 [TBL] [Abstract][Full Text] [Related]
15. Estrogen induces androgen-repressed SOX4 expression to promote progression of prostate cancer cells. Yang M; Wang J; Wang L; Shen C; Su B; Qi M; Hu J; Gao W; Tan W; Han B Prostate; 2015 Sep; 75(13):1363-75. PubMed ID: 26015225 [TBL] [Abstract][Full Text] [Related]
16. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. Hao J; Ci X; Xue H; Wu R; Dong X; Choi SYC; He H; Wang Y; Zhang F; Qu S; Zhang F; Haegert AM; Gout PW; Zoubeidi A; Collins C; Gleave ME; Lin D; Wang Y Eur Urol; 2018 Jun; 73(6):949-960. PubMed ID: 29544736 [TBL] [Abstract][Full Text] [Related]
17. Implications of Bcl-2 and its interplay with other molecules and signaling pathways in prostate cancer progression. Kim JH; Lee H; Shin EA; Kim DH; Choi JB; Kim SH Expert Opin Ther Targets; 2017 Sep; 21(9):911-920. PubMed ID: 28816549 [TBL] [Abstract][Full Text] [Related]
18. Dependence of castration-resistant prostate cancer (CRPC) stem cells on CRPC-associated fibroblasts. Adisetiyo H; Liang M; Liao CP; Jeong JH; Cohen MB; Roy-Burman P; Frenkel B J Cell Physiol; 2014 Sep; 229(9):1170-6. PubMed ID: 24752784 [TBL] [Abstract][Full Text] [Related]
19. Testosterone boosts for treatment of castration resistant prostate cancer: an experimental implementation of intermittent androgen deprivation. Thelen P; Heinrich E; Bremmer F; Trojan L; Strauss A Prostate; 2013 Nov; 73(15):1699-709. PubMed ID: 23868789 [TBL] [Abstract][Full Text] [Related]
20. Targeted BikDD expression kills androgen-dependent and castration-resistant prostate cancer cells. Xie X; Kong Y; Tang H; Yang L; Hsu JL; Hung MC Mol Cancer Ther; 2014 Jul; 13(7):1813-25. PubMed ID: 24785255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]