These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 33469973)
41. Context-specific amino acid substitution matrices and their use in the detection of protein homologs. Goonesekere NC; Lee B Proteins; 2008 May; 71(2):910-9. PubMed ID: 18004781 [TBL] [Abstract][Full Text] [Related]
42. Neighbor preferences of amino acids and context-dependent effects of amino acid substitutions in human, mouse, and dog. Fu M; Huang Z; Mao Y; Tao S Int J Mol Sci; 2014 Sep; 15(9):15963-80. PubMed ID: 25210846 [TBL] [Abstract][Full Text] [Related]
43. Accuracy of structure-based sequence alignment of automatic methods. Kim C; Lee B BMC Bioinformatics; 2007 Sep; 8():355. PubMed ID: 17883866 [TBL] [Abstract][Full Text] [Related]
44. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. Bininda-Emonds OR BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769 [TBL] [Abstract][Full Text] [Related]
45. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. Rice DW; Eisenberg D J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128 [TBL] [Abstract][Full Text] [Related]
50. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. Shi J; Blundell TL; Mizuguchi K J Mol Biol; 2001 Jun; 310(1):243-57. PubMed ID: 11419950 [TBL] [Abstract][Full Text] [Related]
51. A transition probability model for amino acid substitutions from blocks. Veerassamy S; Smith A; Tillier ER J Comput Biol; 2003; 10(6):997-1010. PubMed ID: 14980022 [TBL] [Abstract][Full Text] [Related]
52. A pair-to-pair amino acids substitution matrix and its applications for protein structure prediction. Eyal E; Frenkel-Morgenstern M; Sobolev V; Pietrokovski S Proteins; 2007 Apr; 67(1):142-53. PubMed ID: 17243158 [TBL] [Abstract][Full Text] [Related]
53. Predicting secondary structures of proteins. Recognizing properties of amino acids with the logical analysis of data algorithm. Błazewicz J; Hammer PL; Lukasiak P IEEE Eng Med Biol Mag; 2005; 24(3):88-94. PubMed ID: 15971846 [No Abstract] [Full Text] [Related]
54. Evolutionary patterns of amino acid substitutions in 12 Drosophila genomes. Yampolsky LY; Bouzinier MA BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S10. PubMed ID: 21143793 [TBL] [Abstract][Full Text] [Related]
55. Prediction of protein contacts from correlated sequence substitutions. Sadowski MI; Taylor WR Sci Prog; 2013; 96(Pt 1):33-42. PubMed ID: 23738436 [TBL] [Abstract][Full Text] [Related]
56. Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Tillier ER; Lui TW Bioinformatics; 2003 Apr; 19(6):750-5. PubMed ID: 12691987 [TBL] [Abstract][Full Text] [Related]
57. Prediction of protein secondary structure based on residue pairs. Liu X; Zhang LM; Zheng WM J Bioinform Comput Biol; 2004 Jun; 2(2):343-52. PubMed ID: 15297986 [TBL] [Abstract][Full Text] [Related]
59. Multiple sequence alignment as a guideline for protein engineering strategies. Davidson AR Methods Mol Biol; 2006; 340():171-81. PubMed ID: 16957337 [TBL] [Abstract][Full Text] [Related]
60. Reduced amino acid alphabets exhibit an improved sensitivity and selectivity in fold assignment. Peterson EL; Kondev J; Theriot JA; Phillips R Bioinformatics; 2009 Jun; 25(11):1356-62. PubMed ID: 19351620 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]