These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33469990)

  • 1. In silico prediction of mitochondrial toxicity of chemicals using machine learning methods.
    Zhao P; Peng Y; Xu X; Wang Z; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2021 Oct; 41(10):1518-1526. PubMed ID: 33469990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity.
    Hemmerich J; Troger F; Füzi B; F Ecker G
    Mol Inform; 2020 May; 39(5):e2000005. PubMed ID: 32108997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.
    Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Computational Toxicology by Interpretable Machine Learning.
    Jia X; Wang T; Zhu H
    Environ Sci Technol; 2023 Nov; 57(46):17690-17706. PubMed ID: 37224004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discriminant models on mitochondrial toxicity improved by consensus modeling and resolving imbalance in training.
    Tang W; Chen J; Hong H
    Chemosphere; 2020 Aug; 253():126768. PubMed ID: 32464767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XML-CIMT: Explainable Machine Learning (XML) Model for Predicting Chemical-Induced Mitochondrial Toxicity.
    Jaganathan K; Rehman MU; Tayara H; Chong KT
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases.
    Guo H; Zhang P; Zhang R; Hua Y; Zhang P; Cui X; Huang X; Li X
    Front Immunol; 2022; 13():1015409. PubMed ID: 36353637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental toxicity risk evaluation of nitroaromatic compounds: Machine learning driven binary/multiple classification and design of safe alternatives.
    Hao Y; Fan T; Sun G; Li F; Zhang N; Zhao L; Zhong R
    Food Chem Toxicol; 2022 Dec; 170():113461. PubMed ID: 36243219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on machine learning methods for in silico toxicity prediction.
    Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method.
    Zhang H; Shen C; Liu RZ; Mao J; Liu CT; Mu B
    J Appl Toxicol; 2020 Sep; 40(9):1198-1209. PubMed ID: 32207182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods.
    Asadollahi-Baboli M
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):826-31. PubMed ID: 23068157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of mechanistic categories and local models to facilitate the prediction of toxicity.
    Cronin MT; Enoch SJ; Hewitt M; Madden JC
    ALTEX; 2011; 28(1):45-9. PubMed ID: 21311849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementing comprehensive machine learning models of multispecies toxicity assessment to improve regulation of organic compounds.
    He Y; Liu G; Hu S; Wang X; Jia J; Zhou H; Yan X
    J Hazard Mater; 2023 Sep; 458():131942. PubMed ID: 37390684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach.
    Zhang H; Chen QY; Xiang ML; Ma CY; Huang Q; Yang SY
    Toxicol In Vitro; 2009 Feb; 23(1):134-40. PubMed ID: 18940245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Analyses and Prioritization of Tox21 10K Chemicals Affecting Mitochondrial Function by in-Depth Mechanistic Studies.
    Xia M; Huang R; Shi Q; Boyd WA; Zhao J; Sun N; Rice JR; Dunlap PE; Hackstadt AJ; Bridge MF; Smith MV; Dai S; Zheng W; Chu PH; Gerhold D; Witt KL; DeVito M; Freedman JH; Austin CP; Houck KA; Thomas RS; Paules RS; Tice RR; Simeonov A
    Environ Health Perspect; 2018 Jul; 126(7):077010. PubMed ID: 30059008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of effect levels of chemicals from quantitative structure-activity relationship (QSAR) models. I. Chronic lowest-observed-adverse-effect level (LOAEL).
    Mumtaz MM; Knauf LA; Reisman DJ; Peirano WB; DeRosa CT; Gombar VK; Enslein K; Carter JR; Blake BW; Huque KI
    Toxicol Lett; 1995 Sep; 79(1-3):131-43. PubMed ID: 7570650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical features identification for chemical chronic toxicity based on mechanistic forecast models.
    Wang X; Li F; Chen J; Teng Y; Ji C; Wu H
    Environ Pollut; 2022 Aug; 307():119584. PubMed ID: 35688391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.