These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33469990)

  • 21. Predicting the hazardous dose of industrial chemicals in warm-blooded species using machine learning-based modelling approaches.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015 Jun; 26(6):479-98. PubMed ID: 26087353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zebrafish AC
    Lavado GJ; Gadaleta D; Toma C; Golbamaki A; Toropov AA; Toropova AP; Marzo M; Baderna D; Arning J; Benfenati E
    Ecotoxicol Environ Saf; 2020 Oct; 202():110936. PubMed ID: 32800219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EPA toxicity risk assessments in crisis.
    Pelley J
    Environ Sci Technol; 2008 Jul; 42(13):4620. PubMed ID: 18677978
    [No Abstract]   [Full Text] [Related]  

  • 24. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Silico Prediction of Hemolytic Toxicity on the Human Erythrocytes for Small Molecules by Machine-Learning and Genetic Algorithm.
    Zheng S; Wang Y; Liu W; Chang W; Liang G; Xu Y; Lin F
    J Med Chem; 2020 Jun; 63(12):6499-6512. PubMed ID: 31282671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology.
    Li Y; Idakwo G; Thangapandian S; Chen M; Hong H; Zhang C; Gong P
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):219-236. PubMed ID: 30426823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH.
    Nendza M; Gabbert S; Kühne R; Lombardo A; Roncaglioni A; Benfenati E; Benigni R; Bossa C; Strempel S; Scheringer M; Fernández A; Rallo R; Giralt F; Dimitrov S; Mekenyan O; Bringezu F; Schüürmann G
    Regul Toxicol Pharmacol; 2013 Aug; 66(3):301-14. PubMed ID: 23707536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and Salmonella mutagenicity.
    Helma C
    Mol Divers; 2006 May; 10(2):147-58. PubMed ID: 16721629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve Bayes classifier method.
    Zhang H; Ma JX; Liu CT; Ren JX; Ding L
    Food Chem Toxicol; 2018 Nov; 121():593-603. PubMed ID: 30261216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of in silico models for prediction of mutagenicity.
    Bakhtyari NG; Raitano G; Benfenati E; Martin T; Young D
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(1):45-66. PubMed ID: 23534394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transfer learning for predicting human skin sensitizers.
    Tung CW; Lin YH; Wang SS
    Arch Toxicol; 2019 Apr; 93(4):931-940. PubMed ID: 30806762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning.
    Huang ZA; Zhang J; Zhu Z; Wu EQ; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):3971-3984. PubMed ID: 32841125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes.
    Malloy T; Zaunbrecher V; Beryt E; Judson R; Tice R; Allard P; Blake A; Cote I; Godwin H; Heine L; Kerzic P; Kostal J; Marchant G; McPartland J; Moran K; Nel A; Ogunseitan O; Rossi M; Thayer K; Tickner J; Whittaker M; Zarker K
    Integr Environ Assess Manag; 2017 Sep; 13(5):915-925. PubMed ID: 28247928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning models for predicting endocrine disruption potential of environmental chemicals.
    Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the use of in silico tools for prioritising toxicity testing of the low-volume industrial chemicals in REACH.
    Rybacka A; Rudén C; Andersson PL
    Basic Clin Pharmacol Toxicol; 2014 Jul; 115(1):77-87. PubMed ID: 24428755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding and overcoming the technical challenges in using in silico predictions in regulatory decisions of complex toxicological endpoints - A pesticide perspective for regulatory toxicologists with a focus on machine learning models.
    Burgoon LD; Kluxen FM; Frericks M
    Regul Toxicol Pharmacol; 2023 Jan; 137():105311. PubMed ID: 36494002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico estimation of chemical aquatic toxicity on crustaceans using chemical category methods.
    Cao Q; Liu L; Yang H; Cai Y; Li W; Liu G; Lee PW; Tang Y
    Environ Sci Process Impacts; 2018 Sep; 20(9):1234-1243. PubMed ID: 30069560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.