These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3347020)

  • 1. A theory of blood flow in skeletal muscle.
    Schmid-Schönbein GW
    J Biomech Eng; 1988 Feb; 110(1):20-6. PubMed ID: 3347020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: application to pressure and flow transients.
    Schmid-Schönbein GW; Lee SY; Sutton D
    Biorheology; 1989; 26(2):215-27. PubMed ID: 2605329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile pressure and flow in the skeletal muscle microcirculation.
    Lee SY; Schmid-Schönbein GW
    J Biomech Eng; 1990 Nov; 112(4):437-43. PubMed ID: 2273871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic properties of microvessels in rat spinotrapezius muscle.
    Skalak TC; Schmid-Schönbein GW
    J Biomech Eng; 1986 Aug; 108(3):193-200. PubMed ID: 3747462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid exchange in skeletal muscle with viscoelastic blood vessels.
    Lee J; Salathé EP; Schmid-Schönbein GW
    Am J Physiol; 1987 Dec; 253(6 Pt 2):H1548-56. PubMed ID: 3425754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pressure-flow relation for plasma in whole organ skeletal muscle and its experimental verification.
    Sutton DW; Schmid-Schönbein GW
    J Biomech Eng; 1991 Nov; 113(4):452-7. PubMed ID: 1762443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave transmission and input impedance of a model of skeletal muscle microvasculature.
    Frasch HF; Kresh JY; Noordergraaf A
    Ann Biomed Eng; 1994; 22(1):45-57. PubMed ID: 8060026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The mechanogenic reactions of the vessels during pulsatile flow: the theoretical predictions].
    Egorov VA; Moskal VM; Regirer SA; Shadrina NKh
    Fiziol Zh SSSR Im I M Sechenova; 1991 Sep; 77(9):115-22. PubMed ID: 1666593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 90 degrees bifurcation.
    Ku DN; Liepsch D
    Biorheology; 1986; 23(4):359-70. PubMed ID: 3779061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of slip velocity at a membrane surface on blood flow in the microcirculation.
    Pal D; Rudraiah N; Devanathan R
    J Math Biol; 1988; 26(6):705-12. PubMed ID: 3230367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood.
    Khanafer KM; Gadhoke P; Berguer R; Bull JL
    Biorheology; 2006; 43(5):661-79. PubMed ID: 17047283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pressure-flow relation in resting rat skeletal muscle perfused with pure erythrocyte suspensions.
    Sutton DW; Schmid-Schönbein GW
    Biorheology; 1995; 32(1):29-42. PubMed ID: 7548859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Reynolds number steady state flow through a branching network of rigid vessels II. A finite element mixture model.
    Huyghe JM; Oomens CW; van Campen DH
    Biorheology; 1989; 26(1):73-84. PubMed ID: 2804275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of non-Newtonian blood and metabolic states of the blood and vessel wall on the optimum design of single vessels and the vascular bifurcation.
    Oka S; Nakai M
    Biorheology; 1989; 26(5):921-34. PubMed ID: 2620089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.