BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 33470200)

  • 1. Microalgae starch: A promising raw material for the bioethanol production.
    Maia JLD; Cardoso JS; Mastrantonio DJDS; Bierhals CK; Moreira JB; Costa JAV; Morais MG
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2739-2749. PubMed ID: 33470200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of bioethanol production from algal starch hydrolysate by Saccharomyces cerevisiae.
    Singh S; Chakravarty I; Kundu S
    Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):83-87. PubMed ID: 28968215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro and macroalgal biomass: a renewable source for bioethanol.
    John RP; Anisha GS; Nampoothiri KM; Pandey A
    Bioresour Technol; 2011 Jan; 102(1):186-93. PubMed ID: 20663661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioethanol production from microalgae polysaccharides.
    Lakatos GE; Ranglová K; Manoel JC; Grivalský T; Kopecký J; Masojídek J
    Folia Microbiol (Praha); 2019 Sep; 64(5):627-644. PubMed ID: 31352666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algae: Biomass to Biofuel.
    Soni VK; Krishnapriya R; Sharma RK
    Methods Mol Biol; 2021; 2290():31-51. PubMed ID: 34009581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae for economic applications: advantages and perspectives for bioethanol.
    Simas-Rodrigues C; Villela HD; Martins AP; Marques LG; Colepicolo P; Tonon AP
    J Exp Bot; 2015 Jul; 66(14):4097-108. PubMed ID: 25873683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO
    Banerjee S; Ray A; Das D
    Sci Total Environ; 2021 Mar; 762():143080. PubMed ID: 33162147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery.
    Maurya R; Paliwal C; Ghosh T; Pancha I; Chokshi K; Mitra M; Ghosh A; Mishra S
    Bioresour Technol; 2016 Aug; 214():787-796. PubMed ID: 27161655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy.
    Karpagam R; Jawaharraj K; Gnanam R
    Sci Total Environ; 2021 Apr; 766():144236. PubMed ID: 33422843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economic co-production of cellulosic ethanol and microalgal biomass through efficient fixation of fermentation carbon dioxide.
    Liu L; Zhou Z; Gong G; Wu B; Todhanakasem T; Li J; Zhuang Y; He M
    Bioresour Technol; 2024 Mar; 396():130420. PubMed ID: 38336213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.
    Lee OK; Oh YK; Lee EY
    Bioresour Technol; 2015 Nov; 196():22-7. PubMed ID: 26218538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach.
    Rempel A; de Souza Sossella F; Margarites AC; Astolfi AL; Steinmetz RLR; Kunz A; Treichel H; Colla LM
    Bioresour Technol; 2019 Sep; 288():121588. PubMed ID: 31176943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ethanol production with starch-based Tetraselmis subcordiformis grown with CO2 produced during ethanol fermentation].
    Liao S; Yao C; Xue S; Zhang W; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1292-8. PubMed ID: 22117512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol production from microalgae biomass at high-solids loadings.
    Condor BE; de Luna MDG; Chang YH; Chen JH; Leong YK; Chen PT; Chen CY; Lee DJ; Chang JS
    Bioresour Technol; 2022 Nov; 363():128002. PubMed ID: 36155816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particulate size of microalgal biomass affects hydrolysate properties and bioethanol concentration.
    Harun R; Danquah MK; Thiruvenkadam S
    Biomed Res Int; 2014; 2014():435631. PubMed ID: 24971327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae.
    El-Dalatony MM; Kurade MB; Abou-Shanab RAI; Kim H; Salama ES; Jeon BH
    Bioresour Technol; 2016 Nov; 219():98-105. PubMed ID: 27479800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering.
    Aikawa S; Ho SH; Nakanishi A; Chang JS; Hasunuma T; Kondo A
    Biotechnol J; 2015 Jun; 10(6):886-98. PubMed ID: 25867926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.