These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3347024)

  • 1. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part I: Two dimensional formulation for thin myocardial strips.
    Horowitz A; Sheinman I; Lanir Y; Perl M; Sideman S
    J Biomech Eng; 1988 Feb; 110(1):57-61. PubMed ID: 3347024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments.
    Horowitz A; Sheinman I; Lanir Y
    J Biomech Eng; 1988 Feb; 110(1):62-8. PubMed ID: 3347025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.
    Rouillard AD; Holmes JW
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):235-43. PubMed ID: 25009995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural three-dimensional constitutive law for the passive myocardium.
    Horowitz A; Lanir Y; Yin FC; Perl M; Sheinman I; Strumpf RK
    J Biomech Eng; 1988 Aug; 110(3):200-7. PubMed ID: 3172739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall.
    Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM
    J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural model of perimysial collagen fibers for resting myocardial mechanics during ventricular filling.
    MacKenna DA; Vaplon SM; McCulloch AD
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1576-86. PubMed ID: 9321852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementing a micromechanical model into a finite element code to simulate the mechanical and microstructural response of arteries.
    Bianchi D; Morin C; Badel P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2553-2566. PubMed ID: 32607921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle.
    Humphrey JD; Yin FC
    Circ Res; 1989 Sep; 65(3):805-17. PubMed ID: 2766492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical models in mechanics of the left ventricle.
    Pelle G; Ohayon J; Oddou C; Brun P
    Biorheology; 1984; 21(5):709-22. PubMed ID: 6394067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural finite deformation model of the left ventricle during diastole and systole.
    Nevo E; Lanir Y
    J Biomech Eng; 1989 Nov; 111(4):342-9. PubMed ID: 2486374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of fiber orientation based material properties of skeletal muscle in tension.
    Kuthe CD; Uddanwadiker RV; Ramteke A
    Mol Cell Biomech; 2014 Jun; 11(2):113-28. PubMed ID: 25831858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale finite element analysis of the beating heart.
    McCulloch A; Waldman L; Rogers J; Guccione J
    Crit Rev Biomed Eng; 1992; 20(5-6):427-49. PubMed ID: 1486784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.