These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 3347025)
1. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments. Horowitz A; Sheinman I; Lanir Y J Biomech Eng; 1988 Feb; 110(1):62-8. PubMed ID: 3347025 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part I: Two dimensional formulation for thin myocardial strips. Horowitz A; Sheinman I; Lanir Y; Perl M; Sideman S J Biomech Eng; 1988 Feb; 110(1):57-61. PubMed ID: 3347024 [TBL] [Abstract][Full Text] [Related]
3. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Masithulela F Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998 [TBL] [Abstract][Full Text] [Related]
4. An anatomical heart model with applications to myocardial activation and ventricular mechanics. Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783 [TBL] [Abstract][Full Text] [Related]
5. Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle. Humphrey JD; Yin FC Circ Res; 1989 Sep; 65(3):805-17. PubMed ID: 2766492 [TBL] [Abstract][Full Text] [Related]
6. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue. Thorvaldsen T; Osnes H; Sundnes J Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874 [TBL] [Abstract][Full Text] [Related]
7. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall. Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948 [TBL] [Abstract][Full Text] [Related]
8. Large-scale finite element analysis of the beating heart. McCulloch A; Waldman L; Rogers J; Guccione J Crit Rev Biomed Eng; 1992; 20(5-6):427-49. PubMed ID: 1486784 [TBL] [Abstract][Full Text] [Related]
9. Theoretical models in mechanics of the left ventricle. Pelle G; Ohayon J; Oddou C; Brun P Biorheology; 1984; 21(5):709-22. PubMed ID: 6394067 [TBL] [Abstract][Full Text] [Related]
11. Applications of the finite-element method to ventricular mechanics. Yin FC Crit Rev Biomed Eng; 1985; 12(4):311-42. PubMed ID: 3893884 [TBL] [Abstract][Full Text] [Related]
12. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: I--Cylindrical and spherical polar coordinates. Costa KD; Hunter PJ; Rogers JM; Guccione JM; Waldman LK; McCulloch AD J Biomech Eng; 1996 Nov; 118(4):452-63. PubMed ID: 8950648 [TBL] [Abstract][Full Text] [Related]
13. Development of an in vivo method for determining material properties of passive myocardium. Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996 [TBL] [Abstract][Full Text] [Related]
14. An active strain electromechanical model for cardiac tissue. Nobile F; Quarteroni A; Ruiz-Baier R Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205 [TBL] [Abstract][Full Text] [Related]
15. A high-resolution computational model of the deforming human heart. Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753 [TBL] [Abstract][Full Text] [Related]
16. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction. Gotteiner NL; Han G; Chandran KB; Vonesh MJ; Bresticker M; Greene R; Oba J; Kane BJ; Joob A; McPherson DD Am J Card Imaging; 1995 Jul; 9(3):185-94. PubMed ID: 7549359 [TBL] [Abstract][Full Text] [Related]
17. Breaking the state of the heart: meshless model for cardiac mechanics. Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates. Costa KD; Hunter PJ; Wayne JS; Waldman LK; Guccione JM; McCulloch AD J Biomech Eng; 1996 Nov; 118(4):464-72. PubMed ID: 8950649 [TBL] [Abstract][Full Text] [Related]
19. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Gültekin O; Sommer G; Holzapfel GA Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848 [TBL] [Abstract][Full Text] [Related]
20. Homogenization modeling for the mechanics of perfused myocardium. May-Newman K; McCulloch AD Prog Biophys Mol Biol; 1998; 69(2-3):463-81. PubMed ID: 9785951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]